Wafer-scale transfer route for top–down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique

Yulianto N., Refino A.D., Syring A., Majid N., Mariana S., Schnell P., Wahyuono R.A., Triyana K., Meierhofer F., Daum W., Abdi F.F., Voss T., Wasisto H.S., Waag A.

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, Braunschweig, 38106, Germany; Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Langer Kamp 6, Braunschweig, 38106, Germany; Research Center for Physics, Indonesian Institute of Sciences (LIPI), Jl. Kawasan Puspiptek No. 441-442, Tangerang, Selatan 15314, Indonesia; Engineering Physics Program, Institut Teknologi Sumatera (ITERA), Jl. Terusan Ryacudu, Way Huwi, Lampung Selatan, Lampung 35365, Indonesia; Institute of Energy Research and Physical Technologies, Technische Universität Clausthal, Leibnizstraße 4, Clausthal-Zellerfeld, 38678, Germany; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany; Department of Engineering Physics, Institut Teknologi Sepuluh Nopember (ITS), Jl. Arif Rahman Hakim, ITS Campus Sukolilo, Surabaya, 60111, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia


Abstract

The integration of gallium nitride (GaN) nanowire light-emitting diodes (nanoLEDs) on flexible substrates offers opportunities for applications beyond rigid solid-state lighting (e.g., for wearable optoelectronics and bendable inorganic displays). Here, we report on a fast physical transfer route based on femtosecond laser lift-off (fs-LLO) to realize wafer-scale top–down GaN nanoLED arrays on unconventional platforms. Combined with photolithography and hybrid etching processes, we successfully transferred GaN blue nanoLEDs from a full two-inch sapphire substrate onto a flexible copper (Cu) foil with a high nanowire density (~107 wires/cm2), transfer yield (~99.5%), and reproducibility. Various nanoanalytical measurements were conducted to evaluate the performance and limitations of the fs-LLO technique as well as to gain insights into physical material properties such as strain relaxation and assess the maturity of the transfer process. This work could enable the easy recycling of native growth substrates and inspire the development of large-scale hybrid GaN nanowire optoelectronic devices by solely employing standard epitaxial LED wafers (i.e., customized LED wafers with additional embedded sacrificial materials and a complicated growth process are not required). © 2021, The Author(s).


Journal

Microsystems and Nanoengineering

Publisher: Springer Nature

Volume 7, Issue 1, Art No 32, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104864375&doi=10.1038%2fs41378-021-00257-y&partnerID=40&md5=5e79a1dfea08fa65cfe2864997fa1fdc

doi: 10.1038/s41378-021-00257-y

Issn: 20557434

Type: All Open Access, Gold, Green


References

Nakamura, S., Krames, M.R., History of gallium–nitride-based light-emitting diodes for illumination (2013) Proc. IEEE, 101, pp. 2211-2220; Nakamura, S., Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes (2015) Rev. Mod. Phys., 87, pp. 1139-1151; Wasisto, H.S., Prades, J.D., Gülink, J., Waag, A., Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs (2019) Appl. Phys. Rev, 6; Markiewicz, N., Micro light plates for low-power photoactivated (gas) sensors (2019) Appl. Phys. Lett., 114; Goßler, C., GaN-based micro-LED arrays on flexible substrates for optical cochlear implants (2014) J. Phys. D. Appl. Phys., 47; Scholz, G., Continuous live-cell culture imaging and single-cell tracking by computational lensfree LED microscopy (2019) Sensors, 19, pp. 1-13; Schmidt, I., Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms (2017) Biosens. Bioelectron., 94, pp. 74-80; Casals, O., A parts per billion (ppb) sensor for NO2 with microwatt (μW) power requirements based on micro light plates. ACS (2019) Sensors, 4, pp. 822-826; Caccamo, L., Band engineered epitaxial 3D GaN-InGaN core–shell rod arrays as an advanced photoanode for visible-light-driven water splitting (2014) ACS Appl. Mater. Interfaces, 6, pp. 2235-2240; Lin, J.Y., Jiang, H.X., Development of microLED (2020) Appl. Phys. Lett., 116, p. 100502; Liu, X., Submicron full-color LED pixels for microdisplays and micro-LED main displays (2020) J. Soc. Inf. Disp., 28, pp. 410-417; Bian, J., Zhou, L., Yang, B., Yin, Z., Huang, Y.A., Theoretical and experimental studies of laser lift-off of nonwrinkled ultrathin polyimide film for flexible electronics (2020) Appl. Surf. Sci., 499, p. 143910; Park, J.B., Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp (2019) Opt. Express, 27, p. 6832; Li, S.-H., Performance analysis of GaN-based micro light-emitting diodes by laser lift-off process. Solid State (2019) Electron. Lett., 1, pp. 58-63; Park, J.-B., Stable and efficient transfer-printing including repair using a GaN-based microscale light-emitting diode array for deformable displays (2019) Sci. Rep., 9; Kim, J., Kim, J.H., Cho, S.H., Whang, K.H., Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation (2016) Appl. Phys. A Mater. Sci. Process., 122, pp. 1-6; Robin, Y., Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes (2018) Sci. Rep., 8; Nami, M., Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes (2018) Sci. Rep., 8; Asad, M., Optically invariant InGaN nanowire light-emitting diodes on flexible substrates under mechanical manipulation. npj Flex (2019) Electron, 3, pp. 1-6; Li, S., Waag, A., GaN based nanorods for solid state lighting (2012) J. Appl. Phys, p. 111. , 205401; Fernández-Garrido, S., Top–down fabrication of ordered arrays of GaN nanowires by selective area sublimation (2019) Nanoscale Adv., 1, pp. 1893-1900; Yoshizawa, M., Kikuchi, A., Mori, M., Fujita, N., Kishino, K., Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy (1997) Jpn. J. Appl. Phys., 36, pp. L459-L462; Barrigón, E., Heurlin, M., Bi, Z., Monemar, B., Samuelson, L., Synthesis and applications of III–V nanowires (2019) Chem. Rev., 119, pp. 9170-9220; Li, Q., Optical performance of top–down fabricated InGaN/GaN nanorod light emitting diode arrays (2011) Opt. Express, 19, p. 25528; Zhang, S., On the efficiency droop of top–down etched InGaN/GaN nanorod light emitting diodes under optical pumping (2013) AIP Adv., 3, p. 082103; Mariana, S., Vertical GaN nanowires and nanoscale light-emitting-diode arrays for lighting and sensing applications (2019) ACS Appl. Nano Mater., 2, pp. 4133-4142; Dai, X., Flexible light-emitting diodes based on vertical nitride nanowires (2015) Nano Lett., 15, pp. 6958-6964; Guan, N., Flexible white light emitting diodes based on nitride nanowires and nanophosphors (2016) ACS Photonics, 3, pp. 597-603; Guan, N., Colour optimization of phosphor-converted flexible nitride nanowire white light emitting diodes (2019) J. Phys. Photonics, 1, p. 035003; Kapoor, A., Green electroluminescence from radial m -Plane InGaN quantum wells grown on gan wire sidewalls by metal–organic vapor phase epitaxy (2018) ACS Photonics, 5, pp. 4330-4337; Chung, K., Lee, C.-H., Yi, G.-C., Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices (2010) Science, 330, pp. 655-657; Ha, J., The fabrication of vertical light-emitting diodes using chemical lift-off process (2008) IEEE Photonics Technol. Lett., 20, pp. 2007-2009; Kobayashi, Y., Kumakura, K., Akasaka, T., Makimoto, T., Layered boron nitride as a release layer for mechanical transfer of GaN-based devices (2012) Nature, 484, pp. 223-227; Hwang, D., Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates (2016) Opt. Express, 24, pp. 22875-22880; Bornemann, S., Femtosecond laser lift-off with sub-bandgap excitation for production of free-standing GaN light-emitting diode chips (2019) Adv. Eng. Mater., 22; Yulianto, N., Ultrashort pulse laser lift-off processing of InGaN/GaN light-emitting diode chips (2021) MACS Appl. Electron Mater, 3, pp. 778-788; Voronenkov, V., Laser slicing: a thin film lift-off method for GaN-on-GaN technology (2019) Results Phys., 13, pp. 27-30; Tian, Z., Super flexible GaN light emitting diodes using microscale pyramid arrays through laser lift-off and dual transfer (2018) Opt. Express, 26, p. 1817; Tian, X., Chen, W., Zhang, J., Thermal design for the high-power LED lamp (2011) J. Semicond., 32, pp. 1-4; Schmidt, M.P., Flexible free-standing SU-8 microfluidic impedance spectroscopy sensor for 3-D molded interconnect devices application (2016) J. Sens. Sens. Syst., 1, pp. 55-61; Spratley, J.P.F., Ward, M.C.L., Hall, P.S., Highly flexible SU-8 microstructures (2007) Solid-State Sensors, Actuators Microsystems Conference IEEE, pp. 587-590; Wasisto, H.S., Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection (2013) Sens. Actuators, B Chem., 189, pp. 146-156; Merzsch, S., Production of vertical nanowire resonators by cryogenic-ICP-DRIE (2014) Microsyst. Technol., 20, pp. 759-767; Hamdana, G., Towards fabrication of 3D isotopically modulated vertical silicon nanowires in selective areas by nanosphere lithography (2017) Microelectron. Eng., 179, pp. 74-82; Wasisto, H.S., Merzsch, S., Steib, F., Waag, A., Peiner, E., Vertical silicon nanowire array-patterned microcantilever resonators for enhanced detection of cigarette smoke aerosols (2014) Micro Nano Lett., 9, pp. 676-679; Fatahilah, M.F., Traceable nanomechanical metrology of GaN micropillar array (2018) Adv. Eng. Mater., 20; Yonenaga, I., Hoshi, T., Usui, A., Hardness of bulk single-crystal gallium nitride at high temperatures (2000) Jpn. J. Appl. Phys., Part 2 Lett., 39, pp. 12-14; Awan, K.M., Fabrication and optical characterization of GaN waveguides on (−201)-oriented β-Ga2O3 (2018) Opt. Mater. Express, 8, p. 88; Chang, L.B., Liu, S.S., Jeng, M.J., Etching selectivity and surface profile of GaN in the Ni, SiO2 and photoresist masks using an inductively coupled plasma (2001) Jpn. J. Appl. Phys., 40, pp. 1242-1243; Wang, G.T., Li, Q., Wierer, J.J., Koleske, D.D., Figiel, J.J., Top–down fabrication and characterization of axial and radial III-nitride nanowire LEDs (2014) Phys. Status Solidi. Appl. Mater. Sci., 211, pp. 748-751; Yu, F., GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors (2017) Nanotechnology, 28; Steglich, M., The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching (2014) J. Appl. Phys., 116, p. 173503; Liu, X., Black silicon: fabrication methods, properties and solar energy applications (2014) Energy Environ. Sci., 7, pp. 3223-3263; Pearton, S.J., Shul, R.J., Ren, F., A review of dry etching of GaN and related materials (2000) MRS Internet J. Nitride Semicond. Res., 5, pp. 1-38; Okada, N., Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions (2017) AIP Adv, 7; Fatahilah, M.F., 3D GaN nanoarchitecture for field-effect transistors (2019) Micro Nano Eng., 3, pp. 59-81; Fatahilah, M.F., Top–down GaN nanowire transistors with nearly zero gate hysteresis for parallel vertical electronics (2019) Sci. Rep., 9; Yu, F., Vertical architecture for enhancement mode power transistors based on GaN nanowires (2016) Appl. Phys. Lett., 108, p. 213503; Paramanik, D., Fabrication of high quality GaN nanopillar arrays by dry and wet chemical etching (2013) arXiv Prepr., 1311, p. 0321; Zhou, S., Cao, B., Liu, S., Optimized ICP etching process for fabrication of oblique GaN sidewall and its application in LED (2011) Appl. Phys. A Mater. Sci. Process., 105, pp. 369-377; Vartuli, C.B., ICP dry etching of III-V nitrides (1997) Materials Research Society Symposium – Proceedings, 468; Wong, J.C., Selective anisotropic etching of GaN over AlGaN for very thin films (2018) J. Vac. Sci. Technol. A Vac., Surf., Film., 36, p. 030603; Zhou, S., Cao, B., Liu, S., Dry etching characteristics of GaN using Cl 2 /BCl 3 inductively coupled plasmas (2010) Appl. Surf. Sci., 257, pp. 905-910; Sreenidhi, T., Baskar, K., Dasgupta, A., Dasgupta, N., Reactive ion etching of GaN in SF6 + Ar and SF6 + N2 plasma (2008) semicond. Sci. Technol., 23. , &; Olivier, F., Daami, A., Licitra, C., Templier, F., Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study (2017) Appl. Phys. Lett., 111. , &; Foster, C.M., Collazo, R., Sitar, Z., Ivanisevic, A., Aqueous stability of Ga- and N-polar gallium nitride (2013) Langmuir, 29, pp. 216-220; Ng, H.M., Weimann, N.G., Chowdhury, A., GaN nanotip pyramids formed by anisotropic etching (2003) J. Appl. Phys., 94, pp. 650-653; Tautz, M., Díaz Díaz, D., Wet-chemical etching of gan: underlying mechanism of a key step in blue and white LED production (2018) ChemistrySelect, 3, pp. 1480-1494; Tautz, M., Weimar, A., Graßl, C., Welzel, M., Díaz Díaz, D., Anisotropy and mechanistic elucidation of wet-chemical gallium nitride etching at the atomic level (2020) Phys. Status Solidi Appl. Mater. Sci., 217; Chen, W., GaN nanowire fabricated by selective wet-etching of GaN micro truncated-pyramid (2015) J. Cryst. Growth, 426, pp. 168-172; Maier, K., Helwig, A., Müller, G., Schörmann, J., Eickhoff, M., Photoluminescence detection of surface oxidation processes on InGaN/GaN nanowire arrays (2018) ACS Sensors, 3, pp. 2254-2260; Babichev, A.V., GaN nanowire ultraviolet photodetector with a graphene transparent contact (2013) Appl. Phys. Lett., 103. , 201103-201103-4; Jeong, G.J., Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes (2015) Appl. Phys. Lett., 106, p. 031118; Huang, Y., Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network (2018) Sci. Rep., 8, pp. 1-11; Oh, M., Silver nanowire transparent conductive electrodes for high-efficiency III-nitride light-emitting diodes (2015) Sci. Rep., 5, pp. 1-11; Rasmussen, K.H., Keller, S.S., Jensen, F., Jorgensen, A.M., Hansen, O., SU-8 etching in inductively coupled oxygen plasma (2013) Microelectron. Eng., 112, pp. 35-40; Reddy, J.W., High density, double-sided, flexible optoelectronic neural probes with embedded µLEDs (2019) Front. Genet., 10, pp. 1-15; Nakashima, S., Sugioka, K., Midorikawa, K., Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation (2009) Appl. Surf. Sci., 255, pp. 9770-9774; He, R., Micro-structure changes induced by femtosecond laser on the surface of GaN multilayer film grown on Si substrate (2017) Appl. Phys. A Mater. Sci. Process., 123, pp. 1-8; King, S.W., Cleaning of AlN and GaN surfaces (1998) J. Appl. Phys., 84, pp. 5248-5260; Okada, H., Investigation of HCl-based surface treatment for GaN devices (2016) AIP Conf. Proc., 1709; Lee, C., Sekiguchi, H., Okada, H., Wakahara, A., Plasma-induced damage and recovery on Au/n-GaN Schottky diode in different processes (2012) Jpn. J. Appl. Phys., 51; Diale, M., Auret, F.D., Van Der Berg, N.G., Odendaal, R.Q., Roos, W.D., Analysis of GaN cleaning procedures (2005) Appl. Surf. Sci., 246, pp. 1-3; Hossain, T., Effect of GaN surface treatment on Al2O3/n-GaN MOS capacitors (2015) J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., 33, p. 061201; Douglass, K., Hunt, S., Teplyakov, A., Opila, R.L., Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire (2010) Appl. Surf. Sci., 257, pp. 1469-1472; Sarau, G., Heilmann, M., Latzel, M., Christiansen, S., Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study (2014) Nanoscale, 6, pp. 11953-11962; Harima, H., Properties of GaN and related compounds studied by means of Raman scattering (2002) J. Phys. Condens. Matter, 14, p. R967; Kuball, M., Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control (2001) Surf. Interface Anal., 31, pp. 987-999; Gao, H., First and second order Raman scattering spectroscopy of nonpolar a -plane GaN (2007) J. Appl. Phys., 101, pp. 1-6; Lei, Y., Optical characterization of GaN-based vertical blue light-emitting diodes on P-type silicon substrate (2020) Crystals, 10, pp. 1-12; Park, B.G., Comparison of stress states in GaN films grown on different substrates: langasite, sapphire and silicon (2015) J. Cryst. Growth, 425, pp. 149-153; Horng, R.-H., Tien, C.-H., Chuang, S.-H., Liu, K.-C., Wuu, D.-S., External stress effects on the optical and electrical properties of flexible InGaN-based green light-emitting diodes (2015) Opt. Express, 23, p. 31334; Seo, J.H., A simplified method of making flexible blue LEDs on a plastic substrate (2015) IEEE Photonics J, 7; Chen, W.H., Shock-assisted superficial hexagonal-to-cubic phase transition in GaN/Sapphire interface induced by using ultra-violet laser lift-of techniques (2009) Chinese Phys. Lett., 26; Hsiao, C.L., Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy (2007) Appl. Phys. Lett., 90; Lee, K.T., Mechanism underlying damage induced in gallium nitride epilayer during laser lift-off process (2008) Jpn. J. Appl. Phys., 47, pp. 930-932; Liu, J., Investigation of cracks in gan films grown by combined hydride and metal organic vaporphase epitaxial method (2011) Nanoscale Res. Lett., 6, pp. 1-8; Doan, M.H., Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes (2012) AIP Adv, 2; Cheng, J.-H., Wu, Y.S., Peng, W.C., Ouyang, H., Effects of laser sources on damage mechanisms and reverse-bias leakages of laser lift-off GaN-based LEDs (2009) J. Electrochem. Soc., 156, p. H640; Wu, Y.S., Cheng, J.H., Peng, W.C., Ouyang, H., Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes (2007) Appl. Phys. Lett., 90. , &; Almeida, G.F.B., Third-order nonlinear spectrum of GaN under femtosecond-pulse excitation from the visible to the near infrared (2019) Photonics, 6, p. 69

Indexed by Scopus

Leave a Comment