Uv-vis spectrophotometry observation to find appropriate wavelength for non-invasive blood haemoglobin level measurement optical device

Rahmawaty V., Jenie R.P., Suryana Y., Pambudi S., Widayanti T., Wati A.M., Rahayu I., Aridarma A., Riadhie T.S., Sumaryada T.I., Alatas H., Irzaman

Physics Department, IPB University, Babakan, Dramaga, West Java, Bogor, 16680, Indonesia; Nutrition Department, Binawan University, Kalibata, Jakarta, 13630, Indonesia; TIEM-BPPT, Puspiptek, South Tangerang, 15314, Indonesia; LAPTIAB-BPPT, Puspiptek, South Tangerang, 15314, Indonesia; Biochemistry Department, Universitas Kristen Krida Wacana, Grogol, Jakarta, 11470, Indonesia; PT. Tesena Inovindo, Susukan, Jakarta, 13750, Indonesia


The wavelength convention for non-invasive blood hemoglobin measurement remains inconclusive. This experimental observation to find the appropriate wavelength candidate of LED for non-invasive blood hemoglobin level measurement optical device in 200 nm to 900 nm range. This observation ran in Prodia Kedoya and Biochemistry Lab, Universitas Krida Wacana, West Jakarta, in July 2019. The blood samples were obtained from 10 randomly selected consenting non blinded, healthy adult subjects between 18 and 60 years old. Each blood sample was diluted using double distilled water and measured absorbance using UV-Vis Spectrophotometry. Then it compared to blood hemoglobin level by standard gold measurement from Prodia Kedoya. The result shows functional group found in human Hb is C=O. Appropriate wavelengths were obtained based on the Pearson correlation, standard deviation, and human skin pigment, which are 525 nm, 550 nm, and 570 nm. Then the measurement of Hb levels is carried out at the selected wavelength and processed using a ZunZunSite3 to get the mapping data of Hb level from ten respondents. Root mean square error from the measurement. The error obtained is minimal, which indicates that the wavelength used is suitable for measuring the Hb level. Ethical Clearance: 076/IT3.KEPMSM-IPB/SK/2018. © 2021 by the authors.

Blood hemoglobin level; LED. wavelength; Optical measurement; UV-Vis spectrophotometry


Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 2, Art No , Page 1927 – 1934, Page Count

Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110128505&doi=10.33263%2fBRIAC122.19271934&partnerID=40&md5=547a537df3f8505ff184e0ec51daae6f

doi: 10.33263/BRIAC122.19271934

Issn: 20695837



Whitehead, R.D., Mei, Z., Mapango, C., Jefferds, M.E., Methods and analyzer for haemoglobin measurement in clinical laboratories and field settings (2019) Annual N.Y. Academy Science, 1450, pp. 47-171. , https://doi.org/10.1111/nyas.14124; Keshavarz, A., Zangenehzadeh, S., Hatef, A., Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood (2020) Applied Nanoscience, 10, pp. 1465-1474. , https://doi.org/10.1007/s13204-020-01252-x; Pinto, C., Parab, J., Naik, G., Non-invasive hemoglobin measurement using embedded platform (2020) Sensing and Bio-Sensing Research, 29. , https://doi.org/10.1016/j.sbsr.2020.100370; Hasan, M.K., Aziz, M.H., Zarif, M.I., Hasan, M., Hashem, M.M.A., Guha, S., Love, R.R., Ahamed, S., Non-invasive hemoglobin level prediction in a mobile phone environment: state of the art review and recommendations (2021) Journal of Medical Internet Resesarch, 9, p. 4. , https://doi.org/10.2196/16806; Doshi, R., Panditrao, A., Non-invasive optical sensor for haemoglobin determination (2013) International Journal of Engineering Research and Applications (IJERA), 3, pp. 559-562. , https://doi.org/10.1109/ICSENS.2009.5398321; Dimauro, G., Caivano, D., Dipilato, P., Dipalma, A., Camporeale, M.G., A systematic mapping study on research in anemia assessment with non-invasive devices (2020) Applied Science, 10, p. 4804. , https://doi.org/10.3390/app10144804; Padma, T., Kumari, U., Smart non-invasive hemoglobin measurement using portable embedded technology (2020) International Journal of Online and Biomedical Engineering, 16 (15), p. 106. , https://doi.org/10.3991/ijoe.v16i15.18949; Jenie, R.P., Nasiba, U., Rahayu, I., Nurdin, N.M., Husein, I., Alatas, H., Review on Wavelength for Non-Invasive Blood Hemoglobin Level Measurement Optical Device (2019) AIP Conference Proceedings, p. 2194. , https://doi.org/10.1063/1.5139778; Jenie, R.P., Nurdin, N.M., Husein, I., Alatas, H., Sensitivity of Non-Invasive Blood Glucose Level Measurement Optical Device to Detect Hypoglycaemia (2020) Journal Nutritional Science Vitaminol, 66, pp. S226-S229. , https://doi.org/10.3177/jnsv.66.S226; Chougule, P., Shirodkar, P., Alias, G.G.S.S., Samant, N., Haldankar, C., IR based Haemoglobin measurement using non invasive technique and its classification (2020) International Journal of Engineering Research and Technology, 9, p. 6. , https://doi.org/10.17577/IJERTV9IS060429; Panda, P., Sen, M., Accuracy of haemoglobin estimation by non-in.vasive pulse co-oximetry method: a prospective observational study among neonates, children and young adults (2018) The Jurnal of Medical Research, 4, pp. 10-15. , https://doi.org/10.31254/jmr.2018.4104; Frasca, D., Dahyot-Fizelier, C., Catherine, K., Levrat, Q., Debaene, B., Mimoz, O., Accuracy of a continuous non-invasive haemoglobin monitor in intensive care unit patients (2011) Critical Care Medicine, 39, pp. 2277-2282. , https://doi.org/10.1097/CCM.0b013e3182227e2d; Timm, U., Lewis, E., McGrath, D., Kraitl, J., Ewald, H., LED based sensor system for non-invasive measurement of the haemoglobin concentration in human blood (2009) Proceedings, 23, pp. 825-828. , https://doi.org/10.1007/978-3-540-92841-6_203; Esenaliev, R.O., Larina, I.V., Larin, I.V., Deyo, D.J., Motamedi, M., Prough, D., Optoacoustic technique for non-invasive monitoring of blood Oxygenation: A Feasibility Study (2001) Applied Optics, 41, pp. 4722-4731. , https://doi.org/10.1364/AO.41.004722; Petrova, I.Y., Esenaliev, R.O., Petrov, I.Y., Brecht, H.P., Svensen, C.H., Olsson, J., Deyo, D.J., Prough, D., Optoacoustic monitoring of blood haemoglobin concentration: a pilot clinical study (2005) Optics Letters, 30, pp. 1677-1679. , https://doi.org/10.1364/OL.30.001677; Bender, J.E., Shang, A.B., Moretti, E.W., Yu, B., Richards, L.M., Ramanujam, N., Non-invasive monitoring of tissue haemoglobin using UV-VIS diffuse reflectance spectroscopy: a pilot study (2009) Optics Express, 17, pp. 23396-23409. , https://doi.org/10.1364/OE.17.023396; Hernandez, S.E., Rodriguez, V.D., Perez, J., Martin, F.A., Castellano, M.A., Gonzalez-Mora, J.L., Diffuse reflectance spectroscopy characterization of haemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering (2009) Journal of Biomedical Optics, 14, p. 3. , https://doi.org/10.1117/1.3149864; Aziz, M.H., Hasan, M.K., Mahmood, A., Love, R.R., Ahamed, S.I., Automated cardiac pulse cycle analysis from photoplethysmogram (PPG) signals generated from fingertip videos captured using a smartphone to measure blood hemoglobin levels (2021) Journal Biomedical Helath Information, , https://doi.org/10.1109/JBHI.2021.3068658; Liu, H., Peng, F., Hu, M., Shi, J., Wang, G., Ai, H., Wang, W., Development and validation of a photoplethysmography system for non-invasive monitoring of hemoglobin concentration (2020) Journal of Electrical and Computer Engineering, , https://doi.org/10.1155/2020/3034260; Azarnoosh, M., Dootsdar, H., Assessment of photoplethysmography method in extraction of haemoglobin concentration (2019) Journal Biomedics Physics Engineering, 9. , https://doi.org/10.31661/jbpe.v0i0; Boghani, S., Mei, Z., Perry, G.S., Brittenham, G.M., Cogswell, M.E., Accuracy of capillary haemoglobin measurements for the detection of anaemia in the U.S. low-income toddlers and pregnant women (2017) Nutrients, 9, p. 253. , https://doi.org/10.3390/nu9030253; Chaudhary, R., Dubey, A., Sonker, A., Techniques used for blood screening of haemoglobin levels in blood donors: current insights and future directions (2017) Jorunal Blood Medical, 8, pp. 75-88. , https://doi.org/10.2147/JBM.S103788; Whitehead, R.D., Zhang, M., Stenberg, M.R., Schleicher, RL., Drammeh, B., Mapango, C., Pfeiffer, C.M., Effects of preanalytical factors on haemoglobin measurement: a comparison of two HemoCueR point-of-care analyzers (2017) Clinical Biochem, 50, pp. 513-520. , https://doi.org/10.1016/j.clinbiochem.2017.04.006; Hanneman, S.K., Design, analysis and interpretation of method-comparison studies (2008) AACN Adv. Critical Care, 19, pp. 223-234. , https://doi.org/10.1097/01.AACN.0000318125.41512.a3; Lara, A.M., Kandulu, J., Chisuwo, L., Kashoti, A., Mundy, C., Bates, I., Laboratory costs of a hospital-based blood transfusion service in Malawi (2007) Journal Clinical Pathology, 60, pp. 1117-1120. , https://doi.org/10.1136/jcp.2006.042309; Creswell, C.J., Runquist, O.A., Campbell, M.M., (1972) Spectral Analysis of Organic Compound, 2nd ed, , Burgess Intl Group; Lee, D.K., In, J., Lee, S., Standard deviation and standard error of the mean (2015) Korean Journal Anesthesi, 68, pp. 220-223. , https://doi.org/10.4097/kjae.2015.68.3.220; Abu-Bakar, A.H., Hassan, M.N., Zakaria, A., Halim, A., Pearson’s Correlation Coefficient Analysis of non-invasive Jaundice Detection based on Colour Card Technique (2019) Journal of Physics Conference Series, 1372, p. 012012. , https://doi.org/10.1088/1742-6596/1372/1/012012; Olakanmi, O., Benyeogor, M., Alabi, H., Kumar, S., Bi-spectral photoplethysmographic non-invasive device for real-time monitoring of blood haemoglobin level (2020) International Journal of Science and Engineering Investigations, 9, p. 97. , http://www.ijsei.com/papers/ijsei-99720-03.pdf; Suryana, Y., Pambudi, S., Widayanti, T., Jenie, R.P., Prastowo, B., Zaheri, R., Hardyanto, I., Alatas, H., Review: Non-invasive blood haemoglobin level measurement (2021) AIP Conference Proceedings, 2320, p. 050002. , https://doi.org/10.1063/5.0037477, Irzaman; Prastowo, B., Jenie, R.P., Irzaman; Alatas H. Infra red–light emitting diode and photodiode pair in measuring blood glucose level based on transmittance method (2019) International Conference on Science, Technology, and Environment, , https://doi.org/10.2139/ssrn.3487339

Indexed by Scopus

Leave a Comment