Upregulated anti-angiogenic miR-424-5p in type 1 diabetes (model of subclinical cardiovascular disease) correlates with endothelial progenitor cells, CXCR1/2 and other parameters of vascular health

Tamara A., Coulson D.J., Latief J.S., Bakhashab S., Weaver J.U.

Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 80218, Saudi Arabia; Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, NE9 6SH, United Kingdom; Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom


Background: In spite of clinical progress, cardiovascular disease (CVD) remains the predominant cause of mortality worldwide. Overexpression studies in animals have proven miR-424-5p to have anti-angiogenic properties. As type 1 diabetes mellitus (T1DM) without CVD displays endothelial dysfunction and reduced circulating endothelial progenitor cells (cEPCs), it offers a model of subclinical CVD. Therefore, we explored miR-424-5p, cytokines and vascular health in T1DM. Methods: Twenty-nine well-controlled T1DM patients with no CVD and 20-matched controls were studied. Cytokines IL8, TNF-α, IL7, VEGF-C, cEPCs/CD45dimCD34+CD133+ cells and ex-vivo proangiogenic cells (PACs)/fibronectin adhesion assay (FAA) were measured. MiR-424-5p in plasma and peripheral blood mononuclear cells (PBMC) along with mRNAs in PBMC was evaluated. Results: We found an elevation of IL7 (p = 0.008), IL8 (p = 0.003), TNF-α (p = 0.041), VEGF-C (p = 0.013), upregulation of mRNA CXCR1 (p = 0.009), CXCR2 (p < 0.001) and reduction of cEPCs (p < 0.001), PACs (p < 0.001) and FAA (p = 0.017) in T1DM. MiR-424-5p was upregulated in T1DM in PBMC (p < 0.001). MiR-424-5p was negatively correlated with cEPCs (p = 0.006), PACs (p = 0.005) and FAA (p < 0.001) and positively with HbA1c (p < 0.001), IL7 (p = 0.008), IL8 (p = 0.017), VEGF-C (p = 0.007), CXCR1 (p = 0.02) and CXCR2 (p = 0.001). ROC curve analyses showed (1) miR-424-5p to be a biomarker for T1DM (p < 0.001) and (2) significant upregulation of miR-424-5p, defining subclinical CVD, occurred at HbA1c of 46.5 mmol/mol (p = 0.002). Conclusion: We validated animal research on anti-angiogenic properties of miR-424-5p in T1DM. MiR-424-5p may be a biomarker for onset of subclinical CVD at HbA1c of 46.5 mmol/mol (pre-diabetes). Thus, miR-424-5p has potential use for CVD monitoring whilst anti-miR-424-5p-based therapies may be used to reduce CVD morbidity/mortality in T1DM. © 2021, The Author(s).

CD45dimCD34+CD133+, CXCR1/2; IL8; MiR-424-5p; T1DM


Stem Cell Research and Therapy

Publisher: BioMed Central Ltd

Volume 12, Issue 1, Art No 249, Page – , Page Count

Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105816910&doi=10.1186%2fs13287-021-02332-7&partnerID=40&md5=90e29bc673c4921f95cd1f09971c9525

doi: 10.1186/s13287-021-02332-7

Issn: 17576512

Type: All Open Access, Gold, Green


Organization, W.H., (2018) Noncommunicable diseases country profiles 2018; Ruparelia, N., Chai, J.T., Fisher, E.A., Choudhury, R.P., Inflammatory processes in cardiovascular disease: a route to targeted therapies (2017) Nat Rev Cardiol, 14 (5), p. 314; Livingstone, S.J., Levin, D., Looker, H.C., Lindsay, R.S., Wild, S.H., Joss, N., Leese, G., Colhoun, H.M., Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010 (2015) JAMA., 313 (1), pp. 37-44; de Ferranti, S.D., de Boer, I.H., Fonseca, V., Fox, C.S., Golden, S.H., Lavie, C.J., Magge, S.N., Eckel, R.H., Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association (2014) Diabetes Care, 37 (10), pp. 2843-2863; Ahmed, F.W., Rider, R., Glanville, M., Narayanan, K., Razvi, S., Weaver, J.U., Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study (2016) Cardiovasc Diabetol, 15 (1), p. 116; Sibal, L., Aldibbiat, A., Agarwal, S.C., Mitchell, G., Oates, C., Razvi, S., Weaver, J.U., Home, P.D., Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria (2009) Diabetologia., 52 (8), pp. 1464-1473; West, D.J., Campbell, M.D., Gonzalez, J.T., Walker, M., Stevenson, E.J., Ahmed, F.W., Wijaya, S., Weaver, J.U., The inflammation, vascular repair and injury responses to exercise in fit males with and without type 1 diabetes: an observational study (2015) Cardiovasc Diabetol, 14 (1), p. 71; Hill, J.M., Zalos, G., Halcox, J.P., Schenke, W.H., Waclawiw, M.A., Quyyumi, A.A., Circulating endothelial progenitor cells, vascular function, and cardiovascular risk (2003) N Engl J Med, 348 (7), pp. 593-600; Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., Böhm, M., Nickenig, G., Circulating endothelial progenitor cells and cardiovascular outcomes (2005) N Engl J Med, 353 (10), pp. 999-1007; Ding, Y., Sun, X., Shan, P.F., MicroRNAs and cardiovascular disease in diabetes mellitus (2017) Biomed Res Int, 2017, pp. 4080364-4080368; Ray, S.L., Coulson, D.J., Yeoh, M.L.Y., Tamara, A., Latief, J.S., Bakhashab, S., The role of miR-342 in vascular health. Study in subclinical cardiovascular disease in mononuclear cells, plasma, inflammatory cytokines and PANX2 (2020) Int J Mol Sci, 21 (19). , (,). doi:, https://doi.org/; Urbich, C., Kuehbacher, A., Dimmeler, S., Role of microRNAs in vascular diseases, inflammation, and angiogenesis (2008) Cardiovasc Res, 79 (4), pp. 581-588; Barwari, T., Joshi, A., Mayr, M., MicroRNAs in cardiovascular disease (2016) J Am Coll Cardiol, 68 (23), pp. 2577-2584; Zhou, S.S., Jin, J.P., Wang, J.Q., Zhang, Z.G., Freedman, J.H., Zheng, Y., Cai, L., miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges (2018) Acta Pharmacol Sin, 39 (7), pp. 1073-1084; Andreou, I., Sun, X., Stone, P.H., Edelman, E.R., Feinberg, M.W., miRNAs in atherosclerotic plaque initiation, progression, and rupture (2015) Trends Mol Med, 21 (5), pp. 307-318; Aquila, G., Fortini, C., Pannuti, A., Delbue, S., Pannella, M., Morelli, M.B., Caliceti, C., Cremonesi, A., Distinct gene expression profiles associated with Notch ligands Delta-like 4 and Jagged1 in plaque material from peripheral artery disease patients: a pilot study (2017) J Transl Med, 15 (1), p. 98; Kim, J., Kang, Y., Kojima, Y., Lighthouse, J.K., Hu, X., Aldred, M.A., McLean, D.L., Chun, H.J., An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension (2013) Nat Med, 19 (1), pp. 74-82; Starikova, I., Jamaly, S., Sorrentino, A., Blondal, T., Latysheva, N., Sovershaev, M., Hansen, J.B., Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals (2015) Thromb Res, 136 (3), pp. 566-572; Wang, X., Sundquist, K., Elf, J.L., Strandberg, K., Svensson, P.J., Hedelius, A., Palmér, K., Zöller, B., Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis (2016) Thromb Haemost, 116 (2), pp. 328-336; Snowhite, I.V., Allende, G., Sosenko, J., Pastori, R.L., Messinger Cayetano, S., Pugliese, A., Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes (2017) Diabetologia., 60 (8), pp. 1409-1422; Choi, Y.E., Cha, Y.R., Lee, K.M., Kim, H.J., Yoon, C.H., Proangiogenic cells enhanced persistent and physiologic neovascularization compared with macrophages (2015) Exp Mol Med, 47 (9); Tepper, O.M., Galiano, R.D., Capla, J.M., Kalka, C., Gagne, P.J., Jacobowitz, G.R., Levine, J.P., Gurtner, G.C., Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures (2002) Circulation., 106 (22), pp. 2781-2786; Huang, P.H., Chen, Y.H., Chen, Y.L., Wu, T.C., Chen, J.W., Lin, S.J., Vascular endothelial function and circulating endothelial progenitor cells in patients with cardiac syndrome X (2007) Heart., 93 (9), pp. 1064-1070; Karagkouni, D., Paraskevopoulou, M.D., Chatzopoulos, S., Vlachos, I.S., Tastsoglou, S., Kanellos, I., Papadimitriou, D., Hatzigeorgiou, A.G., DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions (2018) Nucleic Acids Res, 46 (D1), pp. D239-D245; Alnek, K., Kisand, K., Heilman, K., Peet, A., Varik, K., Uibo, R., Increased blood levels of growth factors, proinflammatory cytokines, and Th17 cytokines in patients with newly diagnosed type 1 diabetes (2015) PLoS One, 10 (12); Bakhashab, S., Ahmed, F., Schulten, H.J., Ahmed, F.W., Glanville, M., Al-Qahtani, M.H., Proangiogenic effect of metformin in endothelial cells is via upregulation of VEGFR1/2 and their signaling under hyperglycemia-hypoxia (2018) Int J Mol Sci, 19 (1). , (,). doi:, https://doi.org/; Sasso, F.C., Torella, D., Carbonara, O., Ellison, G.M., Torella, M., Scardone, M., Marra, C., Salvatore, T., Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease (2005) J Am Coll Cardiol, 46 (5), pp. 827-834; Waltenberger, J., Lange, J., Kranz, A., Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals (2000) Circulation., 102 (2), pp. 185-190; Calzascia, T., Pellegrini, M., Lin, A., Garza, K.M., Elford, A.R., Shahinian, A., Ohashi, P.S., Mak, T.W., CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity (2008) Proc Natl Acad Sci U S A, 105 (8), pp. 2999-3004; Osawa, Y., Nagaki, M., Banno, Y., Brenner, D.A., Asano, T., Nozawa, Y., Moriwaki, H., Nakashima, S., Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes (2002) Infect Immun, 70 (11), pp. 6294-6301; Emadi, S., Clay, D., Desterke, C., Guerton, B., Maquarre, E., Charpentier, A., IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis (2005) Blood., 105 (2), pp. 464-473; Golia, E., Limongelli, G., Natale, F., Fimiani, F., Maddaloni, V., Pariggiano, I., Bianchi, R., Calabrò, P., Inflammation and cardiovascular disease: from pathogenesis to therapeutic target (2014) Curr Atheroscler Rep, 16 (9), p. 435; King, T.F., McDermott, J.H., Endothelial progenitor cells and cardiovascular disease (2014) J Stem Cells., 9 (2), pp. 93-106. , PID: 25158158, doi:jsc.2014.9.2.93; Peng, H.Y., Jiang, S.S., Hsiao, J.R., Hsiao, M., Hsu, Y.M., Wu, G.H., Chang, W.M., Shiah, S.G., IL-8 induces miR-424-5p expression and modulates SOCS2/STAT5 signaling pathway in oral squamous cell carcinoma (2016) Mol Oncol, 10 (6), pp. 895-909; Baggiolini, M., Dewald, B., Moser, B., Interleukin-8 and related chemotactic cytokines–CXC and CC chemokines (1994) Adv Immunol, 55, pp. 97-179. , COI: 1:CAS:528:DyaK2cXktlamtr8%3D; Olson, T.S., Ley, K., Chemokines and chemokine receptors in leukocyte trafficking (2002) Am J Physiol Regul Integr Comp Physiol, 283 (1), pp. R7-R28; Yue, T.L., Wang, X., Sung, C.P., Olson, B., McKenna, P.J., Gu, J.L., Interleukin-8. A mitogen and chemoattractant for vascular smooth muscle cells (1994) Circ Res, 75 (1), pp. 1-7; Damas, J.K., Waehre, T., Yndestad, A., Otterdal, K., Hognestad, A., Solum, N.O., Interleukin-7-mediated inflammation in unstable angina: possible role of chemokines and platelets (2003) Circulation., 107 (21), pp. 2670-2676; Prondzinsky, R., Unverzagt, S., Lemm, H., Wegener, N.A., Schlitt, A., Heinroth, K.M., Dietz, S., Buerke, M., Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock (2012) Clin Res Cardiol, 101 (5), pp. 375-384; Li, R., Paul, A., Ko, K.W., Sheldon, M., Rich, B.E., Terashima, T., Interleukin-7 induces recruitment of monocytes/macrophages to endothelium (2012) Eur Heart J, 33 (24), pp. 3114-3123; Mihailovic, P.M., Lio, W.M., Yano, J., Zhou, J., Zhao, X., Chyu, K.Y., Shah, P.K., Dimayuga, P.C., IL-7R blockade reduces post-myocardial infarction-induced atherosclerotic plaque inflammation in ApoE(-/-) mice (2019) Biochem Biophys Rep, 19, p. 100647; Su, T., Gu, C., Draga, D., Zhou, C., Lhamo, T., Zheng, Z., Integrative analysis of miRNA-mRNA network in high altitude retinopathy by bioinformatics analysis (2021) Biosci Rep, 41 (1). , (,). doi:, https://doi.org/; Binderup, H.G., Madsen, J.S., Heegaard, N.H.H., Houlind, K., Andersen, R.F., Brasen, C.L., Quantification of microRNA levels in plasma – impact of preanalytical and analytical conditions (2018) PLoS One, 13 (7); Wang, G., Yan, Y., Zheng, Z., Zhang, T., The mechanism of hsa-miR-424-5 combining PD-1 through mTORC signaling pathway to stimulate immune effect and participate in type 1 diabetes (2020) Biosci Rep, 40 (3). , https://doi.org/10.1042/BSR20193800; Kong, Q., Guo, X., Guo, Z., Su, T., Urinary exosome miR-424 and miR-218 as biomarkers for type 1 diabetes in children (2019) Clin Lab, 65 (6). , https://doi.org/10.7754/Clin.Lab.2018.180921; Lang, H., Xiang, Y., Lin, N., Ai, Z., You, Z., Xiao, J., Liu, D., Yang, Y., Identification of a panel of MiRNAs as positive regulators of insulin release in pancreatic beta-cells (2018) Cell Physiol Biochem, 48 (1), pp. 185-193; Liu, S.P., Fu, Y.F., Huang, R., Gao, M., Gui, R., Qu, Y., MicroRNA-424 overexpression attenuates high glucose and inflammation suppressed osteogenic differentiation (2016) Int J Clin Exp Med, 9 (10), pp. 20118-20125. , COI: 1:CAS:528:DC%2BC1cXpsVamsbs%3D; Colagiuri, S., Lee, C.M., Wong, T.Y., Balkau, B., Shaw, J.E., Borch-Johnsen, K., Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes (2011) Diabetes Care, 34 (1), pp. 145-150; Report of the expert committee on the diagnosis and classification of diabetes mellitus (2003) Diabetes Care, 26, pp. S5-S20; Zhao, M., Xu, L., Qian, H., Bioinformatics analysis of microRNA profiles and identification of microRNA-mRNA network and biological markers in intracranial aneurysm (2020) Medicine (Baltimore), 99 (31); Bye, A., Rosjo, H., Nauman, J., Silva, G.J., Follestad, T., Omland, T., Circulating microRNAs predict future fatal myocardial infarction in healthy individuals – the HUNT study (2016) J Mol Cell Cardiol, 97, pp. 162-168; Chamorro-Jorganes, A., Araldi, E., Penalva, L.O., Sandhu, D., Fernandez-Hernando, C., Suarez, Y., MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 (2011) Arterioscler Thromb Vasc Biol, 31 (11), pp. 2595-2606; Rosano, S., Cora, D., Parab, S., Zaffuto, S., Isella, C., Porporato, R., A regulatory microRNA network controls endothelial cell phenotypic switch during sprouting angiogenesis (2020) Elife, 9. , https://doi.org/10.7554/eLife.48095

Indexed by Scopus

Leave a Comment