Ultrasonication-mediated nitrogen-doped multiwalled carbon nanotubes involving carboxy methylcellulose composite for solid-state supercapacitor applications

Basivi P.K., Ramesh S., Kakani V., Yadav H.M., Bathula C., Afsar N., Sivasamy A., Kim H.S., Pasupuleti V.R., Lee H.

Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India; Department of Mechanical, Robotics and Energy Engineering, Dongguk University –Seoul, Pil-dong, Jung-gu, Seoul, 04620, South Korea; Department of Integrated System and Engineering, School of Global Convergence Studies, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea; Department of Energy and Materials Engineering, Dongguk University –Seoul, Pil-dong, Jung-gu, Seoul, 04620, South Korea; Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Pildong-ro 1 gil, Jung-gu, Seoul, 04620, South Korea; PG & Research Department of Chemistry, L. N. Government College, Ponneri, Tamil Nadu 601204, India; Chemical Engineering Area, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai, 600020, India; Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, University of Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia; Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru, Riau 28292, Indonesia; Department of Environmental Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea


In this study, a novel nanohybrid composite containing nitrogen-doped multiwalled carbon nanotubes/carboxymethylcellulose (N-MWCNT/CMC) was synthesized for supercapacitor applications. The synthesized composite materials were subjected to an ultrasonication-mediated solvothermal hydrothermal reaction. The synthesized nanohybrid composite electrode material was characterized using analytical methods to confirm its structure and morphology. The electrochemical properties of the composite electrode were investigated using cyclic voltammetry (CV), galvanic charge–discharge, and electrochemical impedance spectroscopy (EIS) using a 3 M KOH electrolyte. The fabricated composite material exhibited unique electrochemical properties by delivering a maximum specific capacitance of approximately 274 F g−1 at a current density of 2 A g−1. The composite electrode displayed high cycling stability of 96% after 4000 cycles at 2 A g−1, indicating that it is favorable for supercapacitor applications. © 2021, The Author(s).


Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 9918, Page – , Page Count

Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105588818&doi=10.1038%2fs41598-021-89430-x&partnerID=40&md5=0ae604c9c811af915293dd148d538eac

doi: 10.1038/s41598-021-89430-x

Issn: 20452322

Type: All Open Access, Gold, Green


Wang, Q., Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high-rate performance supercapacitors (2013) Carbon, 52, pp. 209-218. , COI: 1:CAS:528:DC%2BC38XhsVyqtbbK; Wang, Y., Supercapacitor devices based on graphene materials (2009) J. Phys. Chem. C, 113, pp. 13103-13107. , COI: 1:CAS:528:DC%2BD1MXotFeqt70%3D; Yang, K., Capacitive performance of a heteroatom-enriched activated carbon in concentrated sulfuric acid (2013) J. Power Sources, 239, pp. 553-560. , COI: 1:CAS:528:DC%2BC3sXotF2gtbc%3D; Yang, W., Feng, Y., Xiao, D., Yuan, H., Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials (2015) Int. J. Energy Res., 39, pp. 805-811. , COI: 1:CAS:528:DC%2BC2MXlvFelsLg%3D; Balducci, A., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte (2007) J. Power Sources, 165, pp. 922-927. , COI: 1:CAS:528:DC%2BD2sXitlGgt7k%3D; Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354, pp. 56-58. , COI: 1:CAS:528:DyaK38Xmt1Ojtg%3D%3D; Dresselhaus, M., Dresselhaus, G., Saito, R. Physics of carbon nanotubes (1995) Carbon, 33, pp. 883-891. , COI: 1:CAS:528:DyaK2MXntFShu7c%3D; Grobert, N., Carbon nanotubes-becoming clean (2007) Mater Today, 10, pp. 28-35. , COI: 1:CAS:528:DC%2BD2sXht1arsL8%3D; Okamoto, A., Gunjishima, I., Inoue, T., Akoshima, M., Miyagawa, H., Nakano, T., Thermal and electrical conduction properties of vertically aligned carbon nanotubes produced by water-assisted chemical vapor deposition (2011) Carbon, 49, pp. 294-298. , COI: 1:CAS:528:DC%2BC3cXhtlKjurvM; Aricὸ, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Schalkwijk, W.V., Nanostructured materials for advanced energy conversion and storage devices (2005) Nature, 4, pp. 366-377. , COI: 1:CAS:528:DC%2BD2MXjsl2msr0%3D; Kim, J., Eum, J.-H., Kang, J., Kwon, O., Kim, H., Kim, D.W., Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor (2021) Sci. Rep., 11, p. 2063. , COI: 1:CAS:528:DC%2BB3MXit1altbk%3D, PID: 33483594; González, A., Goikolea, E., Barrena, J.A., Mysyk, R., Review on supercapacitors: technologies and materials (2016) Renew. Sustain. Energy Rev., 58, pp. 1189-1206. , COI: 1:CAS:528:DC%2BC28XpsFyntg%3D%3D; Borenstein, A., Carbon-based composite materials for supercapacitor electrodes: a review (2017) J. Mater. Chem. A, 5, pp. 12653-12672. , COI: 1:CAS:528:DC%2BC2sXnslKnsLk%3D; Pandey, S., Karakoti, M., Surana, K., Singh Dhapola, P., Bhushan, B.S., Ganguly, S., Singh, P.K., Sahoo, N.G., Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors (2021) Sci. Rep., 11, p. 3916. , COI: 1:CAS:528:DC%2BB3MXks1Ghsbg%3D, PID: 33594252; Ramesh, S., Kathalingam, A., Karuppasamy, K., Kim, H.-S., Kim, H.S., Nanostructured CuO/Co2O4@ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors (2019) Compos. Part B, 166, pp. 74-85. , COI: 1:CAS:528:DC%2BC1cXisVemt7fL; Kumar, R., Singh, R.K., Alaferdov, A.V., Moshkalev, S.A., Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries (2018) Electrochim. Acta, 281, pp. 78-87. , COI: 1:CAS:528:DC%2BC1cXhtVCnurfE; Ramesh, S., Haldorai, Y., Kim, H.S., Kim, J.H., A nanocrystalline Co3O4@polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors (2017) RSC Adv., 7, pp. 36833-36843. , COI: 1:CAS:528:DC%2BC2sXht1antb3F; Abul Kalam, A., Bae, J., Low-cost, high-efficiency conductive papers fabricated using multi-walled carbon nanotubes, carbon blacks and polyvinyl alcohol as conducting agents (2015) ECS J. Solid State Sci. Technol., 4 (7), pp. M41-M45. , COI: 1:CAS:528:DC%2BC2MXptVGksb0%3D; Samsudin, A.S., Khairul, W.M.M., Isa, I.N., Characterization on the potential of carboxymethyl cellulose for application as proton conducting biopolymer electrolytes (2012) Non-Cryst. Solids, 358, pp. 1104-1112. , COI: 1:CAS:528:DC%2BC38XivFWru7o%3D; Ibrahim, S.M., El-Salmawi, K.M., Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation (2013) J. Polym. Environ., 21, pp. 520-527. , COI: 1:CAS:528:DC%2BC3sXlslymsrw%3D; Gronross, A., Pirkonen, P., Ruppert, O., Ultrasonic depolymerization of aqueous carboxymethylcellulose (2004) Ultrason. Sonochem., 11, pp. 9-12. , COI: 1:CAS:528:DC%2BD3sXptVSgt74%3D; Shi, Z., Zang, S., Jiang, F., Huang, L., Lu, D., Ma, Y., Yang G In situ nano-assembly of bacterial cellulose–polyaniline composites (2012) RSC. Adv., 2, pp. 1040-1046. , COI: 1:CAS:528:DC%2BC38XnslSqsA%3D%3D; Li, J., Fang, L., Tait, W.R., Sun, L., Zhao, L., Qian, L., Preparation of conductive composite hydrogels from carboxy methyl cellulose and polyaniline with a nontoxic crosslinking agent (2017) RSC Adv., 7, p. 54823. , COI: 1:CAS:528:DC%2BC2sXhvV2ksr%2FP; Shan, C., Three-dimensional nitrogen-doped multiwalled carbon nanotube sponges with tunable properties (2013) Nano Lett., 13, pp. 5514-5520. , COI: 1:CAS:528:DC%2BC3sXhs1Chu7jL, PID: 24134742; Yun, Y.S., Park, H.H., Jin, H., Pseudocapacitive effects of N-doped carbon nanotube electrodes in supercapacitors (2012) Materials, 5, pp. 1258-1266. , COI: 1:CAS:528:DC%2BC38XhtFSktrjF; Zhang, J., Zhang, X., Zhou, Y., Guo, S., Wang, K., Liang, Z., Xu, Q., Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors (2014) ACS Sustain. Chem. Eng., 2, pp. 1525-1533. , COI: 1:CAS:528:DC%2BC2cXnslOju74%3D; Dai, L., Chang, D.W., Baek, J., Lu, W., Carbon nanomaterials for advanced energy conversion and storage (2012) Small, 23, pp. 1130-1166. , COI: 1:CAS:528:DC%2BC38XjtVygtrg%3D; Ramesh, S., Yadav, H., Bathula, C., Shinde, S., Sivasamy, A., Kim, H.-S., Kim, H.S., Kim, J.-H., Cubic nanostructure of Co3O4@nitrogen doped graphene oxide/polyindole composite efficient electrodes for High performance energy storage applications (2020) J. Mater. Res. Technol., 9 (5), pp. 11464-11475. , COI: 1:CAS:528:DC%2BB3cXhs1GqtLbP; Ramesh, S., Karuppasamy, K., Msolli, S., Kim, H.S., Kim, H.S., Kim, J.H., A nanocrystalline structured NiO/MnO2@nitrogen doped graphene oxide hybrid nanocomposite for high performance supercapacitors (2017) New J. Chem., 41, pp. 15517-15527. , COI: 1:CAS:528:DC%2BC2sXhslyqsrnO; Ramesh, S., Haldorai, Y., Sivasamy, A., Kim, H.S., Nanostructured Co3O4/nitrogen doped carbon nanotube composites for high-performance supercapacitors (2017) Mater. Lett., 206, pp. 39-43. , COI: 1:CAS:528:DC%2BC2sXhtVyqt7zE; Munoz-Sandoval, E., Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor (2017) Carbon, 115, pp. 409-421. , COI: 1:CAS:528:DC%2BC2sXhtlCqsr0%3D; Peng, H., Ma, G., Ying, W., Wang, A., Huang, H., Lei, Z., In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors (2012) J. Power Sources, 211, pp. 40-45. , COI: 1:CAS:528:DC%2BC38XnsFKjtbo%3D; Xu, Y., Zhang, Y., Synthesis of polypyrrole/sodium carboxymethyl cellulose nanospheres with enhanced supercapacitor performance (2015) Mat. Lett., 139, pp. 145-148. , COI: 1:CAS:528:DC%2BC2cXhvVWktrzM; Babu, I., Manohara, J., William, J., Muralidharan, G., Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra-high energy density supercapacitor (2019) Appl. Surf. Sci., 480, pp. 371-383. , COI: 1:CAS:528:DC%2BC1MXktlKlur0%3D; Yang, W., Yang, W., Ding, F., Sang, L., Ma, Z., Shao, G., Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors (2017) Carbon, 111, pp. 419-427. , COI: 1:CAS:528:DC%2BC28Xhs12nsbzK; Balasubramaniam, M., Balakumar, S., Ultrasonication-assisted fabrication of hierarchical architectures of copper oxide/zinc antimonate nanocomposites-based supercapacitor electrode materials (2019) Ultrasonics Sonochem., 56, pp. 337-349. , COI: 1:CAS:528:DC%2BC1MXosVOms7Y%3D; Xu, Y., Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors (2015) Nanoletters, 15, pp. 4605-4610. , COI: 1:CAS:528:DC%2BC2MXhtVars7jK; Li, S., Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes (2002) J. Phys. Chem. B, 106, pp. 9274-9276. , COI: 1:CAS:528:DC%2BD38Xmt1Clurs%3D; Dijon, J., How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapor deposition (2010) Carbon, 48, pp. 3953-3963. , COI: 1:CAS:528:DC%2BC3cXpsF2lt7w%3D; Conway, B.E., Transition from supercapacitor to battery behavior in electrochemical energy storage (1991) J. Electrochem. Soc., 138, pp. 1539-1548. , COI: 1:CAS:528:DyaK3MXkslGhsLw%3D; Qi, X., Large-scale synthesis of carbon nanomaterials by catalytic chemical vapor deposition: a review of the effects of synthesis parameters and magnetic properties (2010) Materials, 3, pp. 4142-4174. , COI: 1:CAS:528:DC%2BC3cXhtVWmtr%2FO, PID: 28883324; Li, B., Dai, F., Xiao, Q., Yang, L., Shen, J., Zhang, C., Cai, M., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor (2016) Energy Environ. Sci., 9, pp. 102-106. , COI: 1:CAS:528:DC%2BC2MXhvVOgtrrM; Li, M., Xue, J., Integrated Synthesis of Nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors (2014) J. Phys. Chem. C, 118, pp. 2507-2517. , COI: 1:CAS:528:DC%2BC2cXnsFertg%3D%3D; Thirumal, V., Pandurangan, A., Jayavel, R., Krishnamoorthi, S.R., Ilangovan, R., Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications (2016) Curr. Appl. Phys., 16, pp. 816-825; Kumar, R., Joanni, E., Singh, R.K., Singh, D.P., Moshkalev, S.A., Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage (2018) Prog. Energy Combust. Sci., 67, pp. 115-157; Kumar, R., Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation (2017) Carbon, 117, pp. 137-146. , COI: 1:CAS:528:DC%2BC2sXjslais70%3D; Kumar, R., Singh, R.K., Dubey, P.K., Singh, D.P., Yadav, R.M., Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead CNTgraphene nanostructure using microwaves for high-performance supercapacitor electrode (2015) ACS Appl. Mater. Interfaces, 7, pp. 1504-15051; Obeidat, A.M., Gharaibeh, M.A., Obaidat, M., Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage (2017) J. Energy Storage, 13, pp. 123-128; Cao, L., Tang, G., Mei, J., Liu, H., construct hierarchical electrode with NixCo3-xS4nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors (2017) J. Power Sources, 359, pp. 262-269. , COI: 1:CAS:528:DC%2BC2sXosFWgsbg%3D; Shi, K., Ren, M., Zhitomirsky, I., Activated carbon coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification (2014) ACS Sustain. Chem. Eng., 2, pp. 1289-1298. , COI: 1:CAS:528:DC%2BC2cXmt1Gjur4%3D; Shi, K., Zhitomirsky, I., Asymmetric Supercapacitors based on activated carbon -coated carbon nanotubes (2015) Chem. Electro Chem., 2, pp. 396-403. , COI: 1:CAS:528:DC%2BC2MXotlKisbc%3D

Indexed by Scopus

Leave a Comment