The effects of climate change on the Pleistocene rock art of Sulawesi

Huntley J., Aubert M., Oktaviana A.A., Lebe R., Hakim B., Burhan B., Aksa L.M., Geria I.M., Ramli M., Siagian L., Brand H.E.A., Brumm A.

Griffith Centre for Social and Cultural Research, PERAHU, Griffith University, Gold Coast, QLD, Australia; Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, QLD, Australia; Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia; Balai Pelestarian Cagar Budaya, Sulawesi Selatan, Makassar, Indonesia; Balai Arkeologi Sulawesi, Sulawesi Selatan, Makassar, Indonesia; Museum Kepresidenan Republik Indonesia, Balai Kirti, Bogor, Indonesia; Universitas Gadjah Mada (Fakultas Ilmu Budaya-Magister Arkeologi), Yogyakarta, Indonesia; Australian Synchrotron, Clayton, VIC, Australia


Abstract

The equatorial tropics house some of the earliest rock art yet known, and it is weathering at an alarming rate. Here we present evidence for haloclasty (salt crystallisation) from Pleistocene-aged rock art panels at 11 sites in the Maros-Pangkep limestone karsts of southern Sulawesi. We show how quickly rock art panels have degraded in recent decades, contending that climate-catalysed salt efflorescence is responsible for increasing exfoliation of the limestone cave surfaces that house the ~ 45 to 20-thousand-year-old paintings. These artworks are located in the world’s most atmospherically dynamic region, the Australasian monsoon domain. The rising frequency and severity of El Niño-induced droughts from anthropogenic climate change (that is, higher ambient temperatures and more consecutive dry days), combined with seasonal moisture injected via monsoonal rains retained as standing water in the rice fields and aquaculture ponds of the region, increasingly provide ideal conditions for evaporation and haloclasty, accelerating rock art deterioration. © 2021, The Author(s).


Journal

Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 9833, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105789399&doi=10.1038%2fs41598-021-87923-3&partnerID=40&md5=6c22ac76e74c82cf0edd43786a25c24c

doi: 10.1038/s41598-021-87923-3

Issn: 20452322

Type: All Open Access, Gold, Green


References

Head, L., Transformative change requires resisting a new normal (2020) Nat. Clim. Chang., 10 (3), pp. 173-174; Friel, S., Climate change and the people’s health: The need to exit the consumptagenic system (2020) Lancet, 395 (10225), pp. 666-668. , PID: 32087819; Utami, A., Chang, C.-H., Emissions from biomass open burning on the peat soil in indonesia: Integrating modis imagery and gis data (2020) Jurnal Ilmiah Lingkungan Kebumian, 1 (1), pp. 11-18; Field, R.D., Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought (2016) Proc. Natl. Acad. Sci., 113 (33), pp. 9204-9209. , COI: 1:CAS:528:DC%2BC28Xht1Gru7jJ, PID: 27482096; Sesana, E., Gagnon, A.S., Bonazza, A., Hughes, J.J., An integrated approach for assessing the vulnerability of World Heritage Sites to climate change impacts (2020) J. Cult. Herit., 41, pp. 211-224; Markham, A., Osipova, E., Lafrenz Samuels, K., Caldas, A., (2016) World Heritage and tourism in a changing climate, , UNESCO Publishing; García, B.M., Resilient cultural heritage for a future of climate change (2019) J. Int. Aff., 73 (1), pp. 101-120; Aubert, M., Earliest hunting scene in prehistoric art (2019) Nature, 576, pp. 442-445. , COI: 1:CAS:528:DC%2BC1MXitlOmurbI, PID: 31827284; Aubert, M., Brumm, A., Ramli, M., Sutikna, T., Saptomo, E.W., Pleistocene cave art from Sulawesi, Indonesia (2014) Nature, 514 (7521), pp. 223-227. , COI: 1:CAS:528:DC%2BC2cXhslaqs7rK, PID: 25297435; Aubert, M., Palaeolithic cave art in Borneo (2018) Nature, 564 (7735), pp. 254-257. , COI: 1:CAS:528:DC%2BC1cXitFejsLfN, PID: 30405242; Brumm, A., Oktaviana, A.A., Burhan, B., Hakim, B., Lebe, R., Zhao, J.-X., Sulistyarto, P.H., Aubert, M., Oldest cave art found in Sulawesi (2021) Sci. Adv., 7, p. 4648; Thosibo, A., Soekamto, N.H., Duli, A., Mulyadi, Y., Broken painting in the prehistoric cave and chemical content of paint used in Maros Regency, South Sulawesi (2019) J. Phys Conf. Ser., 1341 (3), p. 032047. , COI: 1:CAS:528:DC%2BB3cXos1Krtbc%3D; Standish, C.D., García-Diez, M., O’Connor, S., Oliveira, N.V., Hand stencil discoveries at Lene Hara Cave hint at Pleistocene age for the earliest painted art in Timor-Leste (2020) Archaeol. Res. Asia, 22, p. 100191; Nurdini, N., Maryanti, M., Ilmi, M., Setiawan, P., Saiyasombat, C., Kadja, G.T.M., Physicochemical investigation of prehistoric rock art pigments in Tewet Cave, Sangkulirang-Mangkalihat Site, East Kalimantan-Indonesia (2020) J. Archaeol. Sci. Rep., 31, p. 102345; Ilmi, M.M., Nurdini, N., Maryanti, E., Saiyasombat, C., Setiawan, P., Kadja, G.T.M., Multi-analytical Characterizations of prehistoric rock art pigments from Liang Karim Cave, Sangkulirang-Mangkalihat site, East Kalimantan, Indonesia (2020) Microchem. J., 155, p. 104738. , COI: 1:CAS:528:DC%2BB3cXkvFamtL4%3D; Arias-Ruiz, C., Geochemical fingerprints of climate variation and the extreme La Niña 2010–11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia (2017) Palaeogeogr. Palaeoclimatol. Palaeoecol., 487, pp. 216-228; (2018) Report on Global Warming of 1.5 ͦ C above Pre-Industrial Levels and Related Greenhouse Gas Pathways (2018) Summary for Policymakers. In: Global Warming of 1.5°C. an IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, , Masson-Delmotte, V. et al. (eds.)]. (World Meteorological Organization,); Barkey, R., Climate change impacts related flood hazard to communities around Bantimurung Bulusaraung National Park, Indonesia IOP Conf (2019) Ser. Earth Environ. Sci, 235, pp. 1-12; Krause, C.E., Spatio-temporal evolution of Australasian monsoon hydroclimate over the last 40,000 years (2019) Earth Planet. Sci. Lett., 513, pp. 103-112. , COI: 1:CAS:528:DC%2BC1MXjtVSms7Y%3D; Brumm, A., Hakim, B., Ramli, M., Aubert, M., van den Bergh, G.D., A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi (2018) PLoS ONE, 13 (4). , PID: 29641524, COI: 1:CAS:528:DC%2BC1cXit1aiur%2FP; Brumm, A., Early human symbolic behavior in the Late Pleistocene of Wallacea (2017) Proc. Natl. Acad. Sci., 114 (16), pp. 4105-4110. , COI: 1:CAS:528:DC%2BC2sXlsV2nsLc%3D, PID: 28373568; van Heekeren, H.R., Rock-paintings and other prehistoric discoveries near Maros (South West Celebes) (1952) Laporan Tahunan Dinas Purbakala, 1950, pp. 22-35; Jalandoni, A., First Directly Dated Rock Art in Southeast Asia and the Archaeological Implications (2021) Radiocarbon, , accepted for publication March 12th, . (in press); Chalmin, E., Hoerlé, S., Reiche, I., Taphonomy on the surface of the rock wall: Rock–paint–atmosphere interactions The Oxford Handbook of the Archeology and Anthropology of Rock Art, , http://www.oxfordhandbooks.com/view/https://doi.org/10.1093/oxfordhb/9780190607357.001.0001/oxfordhb-9780190607357-e-47, (eds. David, B., McNiven, I.J.). Oxford Handbook, Accessed 22 June 2018; Banerjee, S., Joshi, S., Culturable bacteria associated with the caves of Meghalaya in India contribute to speleogenesis (2016) J. Cave Karst Stud., 78, pp. 144-157. , COI: 1:CAS:528:DC%2BC1MXitFKnsrw%3D; Lepinay, C., Mihajlovski, A., Seyer, D., Touron, S., Bousta, F., Di Martino, P., Biofilm communities survey at the areas of salt crystallization on the walls of a decorated shelter listed at UNESCO World cultural Heritage (2017) Int. Biodeterior. Biodegrad., 122, pp. 116-127. , COI: 1:CAS:528:DC%2BC2sXotVClt74%3D; Barbu-Tudoran, L., Bacterial diversity in a microbial mat colonizing a man-made geothermal spring from Romania (2015) Stud. Univ. Babes Bolyai Biol., 60 (1), pp. 5-22; Borgonie, G., Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa (2015) Nat. Commun., 6, p. 8952. , COI: 1:CAS:528:DC%2BC2MXhvFWlsbfO, PID: 26597082; Camuffo, D., (2014) Microclimate for Cultural Heritage: Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments, , 2, Elsevier; Cerling, T.E., Woody cover and hominin environments in the past 6 million years (2011) Nature, 476 (7358), pp. 51-56. , COI: 1:CAS:528:DC%2BC3MXpslShu74%3D, PID: 21814275; deMenocal, P.B., Climate and human evolution (2011) Science, 331 (6017), pp. 540-542. , COI: 1:CAS:528:DC%2BC3MXisFOmtL8%3D, PID: 21292958; Potts, R., Environmental hypotheses of hominin evolution (1998) Am. J. Phys. Anthropol., 107 (S27), pp. 93-136; Lewis, S.L., Maslin, M.A., Defining the anthropocene (2015) Nature, 519 (7542), pp. 171-180. , COI: 1:CAS:528:DC%2BC2MXktlSksrk%3D, PID: 25762280; Turney, C.S.M., Global peak in atmospheric radiocarbon provides a potential definition for the onset of the anthropocene epoch in 1965 (2018) Sci. Rep., 8 (1), p. 3293; Deng, Z., Hung, H.C., Carson, M.T., Oktaviana, A.A., Hakim, B., Simanjuntak, T., Validating earliest rice farming in the Indonesian Archipelago (2020) Sci. Rep., 10 (1), p. 10984; Reeves, J.M., Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: An OZ-INTIMATE compilation (2013) Quatern. Sci. Rev., 74, pp. 21-34; Reeves, J.M., Palaeoenvironmental change in tropical Australasia over the last 30,000 years–a synthesis by the OZ-INTIMATE group (2013) Quatern. Sci. Rev., 74, pp. 97-114; Gergis, J., Neukom, R., Gallant, A.J.E., Karoly, D.J., Australasian temperature reconstructions spanning the last millennium (2016) J. Clim., 29 (15), pp. 5365-5392; Griffiths, M.L., Western Pacific hydroclimate linked to global climate variability over the past two millennia (2016) Nat. Commun., 7, p. 11719. , COI: 1:CAS:528:DC%2BC28Xpslyht7w%3D, PID: 27271972; Bulbeck, D., Caldwell, I., Oryza sativa and the origins of kingdoms in South Sulawesi, Indonesia: Evidence from rice husk phytoliths (2008) Indonesia Malay World, 36 (104), pp. 1-20; Macknight, C.C., The rise of agriculture in South Sulawesi before 1600. RIMA (1983) Rev. Indonesian Malayan Affairs Sydney, 17, pp. 92-116; Cai, W., ENSO and greenhouse warming (2015) Nat. Clim. Chang., 5, pp. 849-859; Giarno, M., Hadi, P., Suprayogi, S., Murti, S.H., Daily quantitative precipitation estimates use weather radar reflectivity in South Sulawesi (2019) IOP Conf. Ser. Earth Environ. Sci., 256 (1), p. 012042; Kimbrough, A.K., (2016) The Glacial-Interglacial Monsoon Recorded by Stalagmites from Southwest Sulawesi, , Indonesia. PhD Thesis, Research School of Earth Sciences, Australian National University; Lestari, S., Hamada, J.-I., Syamsudin, F., Matsumoto, J., Yamanaka, M.D., ENSO influences on rainfall extremes around Sulawesi and Maluku Islands in the eastern Indonesian maritime continent (2016) Sola, 12, pp. 37-41; Vasco, F., Basic chemical mechanisms outdoors. Chapter 7 (2010) Basic Environmental Mechanism Affecting Cultural Heritage: Understanding Deterioration Mechanism for Conservation Purposes, pp. 75-105. , Camuffo D, Fassina V, Havermans J, (eds), Nardini Editore; Artieda, H.J.O., Hudnall, W.H., Gypsum, a tricky material (2009) Soil Sci. Soc. Am. J., 73 (6), pp. 1757-1763. , COI: 1:CAS:528:DC%2BD1MXhsVSku73I; Deacon, J., Rock art conservation and tourism (2006) J. Archaeol. Method Theory, 13, pp. 379-399; Coye, N., Lascaux and Preservation Issues in Subterranean Environments (2011) Proceedings of the International Symposium (Paris, February 26 and 27), , Maison des Sciences de l’Homme; Kurniawan, R., Chemistry of prehistoric rock art pigments from the Indonesian island of Sulawesi (2019) Microchem. J., 146, pp. 227-233. , COI: 1:CAS:528:DC%2BC1MXht1artbw%3D; Setiawan, A.M., Koesmaryono, Y., Faqih, A., Gunawan, D., Observed and blended gauge-satellite precipitation estimates perspective on meteorological drought intensity over South Sulawesi, Indonesia (2017) IOP Conf. Ser. Earth Environ. Sci., 54 (1), p. 012040; Miller, S.A., Moore, F.C., Climate and health damages from global concrete production (2020) Nat. Clim. Chang., 10, pp. 439-443; Varagur, K., World’s Oldest Art under Threat from Cement Mining in Indonesia, , https://www.theguardian.com/science/2020/feb/21/worlds-oldest-art-under-threat-from-cement-mining-in-indonesia-sulawesi, The Guardian (Australian Edition), . Accessed on 11 Sept 2020; Bourges, F., Genthon, P., Genty, D., Lorblanchet, M., Mauduit, E., d’Hulst, D., Conservation of prehistoric caves and stability of their inner climate: Lessons from Chauvet and other French caves (2014) Sci. Total Environ., 493, pp. 79-91. , COI: 1:CAS:528:DC%2BC2cXhtFyktLnL, PID: 24937493; BronkRamsey, C., (2020) OxCal Program v4.4.2 Radiocarbon Accelerator Unit, , University of Oxford; Hogg, A., SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP (2020) Radiocarbon, 62, pp. 759-778. , COI: 1:CAS:528:DC%2BB3cXhvFaqsr7P

Indexed by Scopus

Leave a Comment