Testing short distance anisotropy in space

Mann R.B., Husin I., Patel H., Faizal M., Sulaksono A., Suroso A.

Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Perimeter Institute, 31 Caroline St. N., Waterloo, ON N2L 2Y5, Canada; Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 1624, Indonesia; IoT and Physics Lab, Sampoerna University, Jakarta, 12780, Indonesia; Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, V6T 1Z1, Canada; Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan Campus, Kelowna, V1V1V7, Canada; Canadian Quantum Research Center, 204-3002, 32 Ave, Vernon, BC V1T 2L7, Canada; Theoretical Physics Lab, THEPI Division, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia


Abstract

The isotropy of space is not a logical requirement but rather is an empirical question; indeed there is suggestive evidence that universe might be anisotropic. A plausible source of these anisotropies could be quantum gravity corrections. If these corrections happen to be between the electroweak scale and the Planck scale, then these anisotropies can have measurable consequences at short distances and their effects can be measured using ultra sensitive condensed matter systems. We investigate how such anisotropic quantum gravity corrections modify low energy physics through an anisotropic deformation of the Heisenberg algebra. We discuss how such anisotropies might be observed using a scanning tunnelling microscope. © 2021, The Author(s).


Journal

Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 7474, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103814110&doi=10.1038%2fs41598-021-86355-3&partnerID=40&md5=0de5db158d2c9824d07c0ede05f6c397

doi: 10.1038/s41598-021-86355-3

Issn: 20452322

Type: All Open Access, Gold, Green


References

Murase, K., Ultrahigh-energy photons as a probe of nearby transient ultrahigh-energy cosmic-ray sources and possible lorentz-invariance violation (2009) Phys. Rev. Lett., 103 (8), p. 081102; Thomas, P.S., Detecting lorentz violations with gravitational waves from black hole binaries (2018) Phys. Rev. Lett., 120 (4), p. 041104; Moffat, J.W., Quantum gravity, the origin of time and time’s arrow (1993) Found. Phys., 23, p. 411437; Moffat, J.W., Lorentz violation of quantum gravity (2010) Classical Quant. Gravity, 27 (13), p. 135016; Faizal, M., Das, S., Dimensional reduction via a novel Higgs mechanism (2018) Gen. Rel. Grav., 50, p. 87; Vagenas, E.C., Das, S., Faizal, M., Renormalizing gravity: A new insight into an old problem (2018) Int. J. Mod. Phys. D., 27 (14), p. 1847002; Bombelli, L., Space-time as a causal set (1987) Phys. Rev. Lett., 59 (5), pp. 521-524; Brightwell, G., Observables in causal set cosmology (2003) Phys. Rev. D, 67 (8), p. 084031; Rovelli, C., Smolin, L., Spin networks and quantum gravity (1995) Phys. Rev. D, 52 (10), pp. 5743-5759; Loll, R., Volume operator in discretized quantum gravity (1995) Phys. Rev. Lett., 75 (17), pp. 3048-3051; Ezawa, K., Nonperturbative solutions for canonical quantum gravity: An overview (1997) Phys. Rep., 286 (5), pp. 271-348; Baez, J.C., Spin foam models (1998) Classical Quant. Gravity, 15 (7), pp. 1827-1858; Castro Neto, A.H., The electronic properties of graphene (2009) Rev. Mod. Phys., 81 (1), pp. 109-162; Gusynin, V.P., Sharapov, S.G., Carbotte, J.P., AC conductivity of graphene: From tight-binding model to 2 + 1-dimensional quantum electrodynamics (2007) Int. J. Mod. Phys. B., 21 (27), pp. 4611-4658; Iorio, A., Generalized dirac structure beyond the linear regime in graphene (2018) Int. J. Mod. Phys. D, 27 (8), p. 1850080. , COI: 1:CAS:528:DC%2BC1cXhtVGjs7jI; Iorio, A., Pais, P., Generalized uncertainty principle in graphene (2019) J. Phys. Conf. Ser., 1275, p. 012061; Kempf, A., Mangano, G., Mann, R.B., Hilbert space representation of the minimal length uncertainty relation (1995) Phys. Rev. D, 52 (2), pp. 1108-1118; Das, S., Vagenas, E.C., Universality of quantum gravity corrections (2008) Phys. Rev. Lett., 101 (22), p. 221301; Pikovski, I., Probing Planck-scale physics with quantum optics (2012) Nat. Phys., 8, p. 393397; Zhang, Y.-C., Two-fluid theory for a superfluid system with anisotropic effective masses (2019) Phys. Rev. A, 99 (4), p. 043622; Pastukhov, V., Infrared behavior of dipolar Bose systems at low temperatures (2017) J. Low Temp. Phys., 186, p. 148162; Pastukhov, V., Beyond mean-field properties of binary dipolar Bose mixtures at low temperatures (2017) Phys. Rev. A, 95 (2), p. 023614; Zhang, Y.-C., Zitterbewegung effect in spin-orbit-coupled spin-1 ultracold atoms (2013) Phys. Rev. A, 87 (2), p. 023612; Liu, C.-F., Circular-hyperbolic skyrmion in rotating pseudo-spin-1/2 Bose–Einstein condensates with spin-orbit coupling (2012) Phys. Rev. A, 86 (5), p. 053616; Ji, A.C., Xie, X.C., Liu, W.M., Quantum magnetic dynamics of polarized light in arrays of microcavities (2007) Phys. Rev. Lett., 99 (18), p. 183602; Liang, Z.X., Zhang, Z.D., Liu, W.M., Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential (2005) Phys. Rev. Lett., 94 (5), p. 050402; Land, K., Magueijo, J., Examination of evidence for a preferred axis in the cosmic radiation anisotropy (2005) Phys. Rev. Lett., 95 (7), p. 071301; Land, K., Magueijo, J., The axis of evil revisited (2007) Month. Not. R. Astronom. Soc., 378 (1), pp. 153-158; Kiefer, C., Krämer, M., Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum (2012) Phys. Rev. Lett., 108 (2), p. 021301; Bini, D., On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity (2013) Phys. Rev. D, 87 (10), p. 104008; Talebian, A., Nassiri-Rad, A., Firouzjahi, H., Stochastic effects in anisotropic inflation (2020) Phys. Rev. D, 101 (2), p. 023524; Fujita, T., Obata, I., Does anisotropic inflation produce a small statistical anisotropy? (2018) J. Cosmol. Astropart. Phys., 2018 (1), p. 049; Easther, R., Imprints of short distance physics on inflationary cosmology (2003) Phys. Rev. D, 67 (6), p. 063508; Easther, R., Inflation as a probe of short distance physics (2001) Phys. Rev. D, 64 (10), p. 103502; Randall, L., Sundrum, R., Large mass hierarchy from a small extra dimension (1999) Phys. Rev. Lett., 83 (17), pp. 3370-3373; Randall, L., Sundrum, R., An alternative to compactification (1999) Phys. Rev. Lett., 83 (23), pp. 4690-4693; Mateos, D., Trancanelli, D., Anisotropic N=4 Super–Yang–Mills plasma and its instabilities (2011) Phys. Rev. Lett., 107 (10), p. 101601; Mateos, D., Trancanelli, D., Thermodynamics and instabilities of a strongly coupled anisotropic plasma (2011) J. High Energy Phys., 2011, p. 7; Mansoori, S.A.H., Holographic complexity of anisotropic black branes (2019) Phys. Rev. D, 100 (4), p. 046014; Ávila, D., Thermodynamics of anisotropic branes (2016) J. High Energy Phys., 2016, p. 11; Koyama, K., Cosmic microwave background radiation anisotropies in brane worlds (2003) Phys. Rev. Lett., 91 (22), p. 221301; Tsujikawa, S., Liddle, A.R., Constraints on braneworld inflation from CMB anisotropies (2004) J. Cosmol. Astropart. Phys., 3, p. 1475; Fontanini, M., Spallucci, E., Padmanabhan, T., Zero-point length from string fluctuations (2006) Phys. Lett. B, 633 (4), pp. 627-630; Spallucci, E., Smailagic, A., Padmanabhan, T., (2003) String Theory T-Duality and the Zero Point Length of Spacetime, , https://doi.org/10.1088/0264-9381/27/13/1350163; Kothawala, D., Path integral duality modified propagators in spacetimes with constant curvature (2009) Phys. Rev. D, 80 (4), p. 044005; Arkani-Hamed, N., Dimopoulos, S., Dvali, G., The hierarchy problem and new dimensions at a millimeter (1998) Phys. Lett. B, 429, pp. 263-272; Antoniadis, I., New dimensions at a millimeter to a fermi and superstrings at a TeV (1998) Phys. Lett. B, 436, pp. 257-263; Hossenfelder, S., Minimal length scale scenarios for quantum gravity (2013) Living Rev. Relat., 16, p. 1; Tawfik, A.N., Diab, A.M., A review of the generalized uncertainty principle (2015) Rep. Progr. Phys., 78 (12), p. 126001; Thiemann, T., The LQG string-loop quantum gravity quantization of string theory: I. Flat target space (2006) Classical Quant. Gravity, 23 (6), pp. 1923-1970; Markopoulou, F., Smolin, L., Nonperturbative dynamics for abstract (p, q) string networks (1998) Phys. Rev. D, 58 (8), p. 084033; Majumder, B., Sen, S., Do the modified uncertainty principle and polymer quantization predict same physics? (2012) Phys. Lett. B, 717 (4), pp. 291-294; Ali, A.F., Das, S., Vagenas, E.C., Proposal for testing quantum gravity in the lab (2011) Phys. Rev. D, 84 (4), p. 044013; Pedram, P., Pouria, N.K., Taheri, S.H., The effects of minimal length and maximal momentum on the transition rate of ultra cold neutron in gravitational field (2013) J. High Energy Phys., 3, p. 1029; Bosso, P., Amplified transduction of Planck-scale effects using quantum optics (2017) Phys. Rev. A, 96 (2), p. 023849; Villalpando, C., Modak, S.K., Indirect probe of quantum gravity using molecular wave-packets (2019) Classical Quant. Grav, 36 (21), p. 215016; Brahma, S., Linking loop quantum gravity quantization ambiguities with phenomenology (2017) Phys. Rev. D, 95, p. 4; ’t Hooft, G., Quantization of point particles in (2 + 1)-dimensional gravity and spacetime discretenes (1996) Classical Quant. Gravity, 13 (5), pp. 1023-1039; AlanKostelecký, V., Samuel, S., Spontaneous breaking of Lorentz symmetry in string theory (1989) Phys. Rev. D, 39 (2), pp. 683-685; Carroll, S.M., Noncommutative field theory and Lorentz violation (2001) Phys. Rev. Lett., 87 (14), p. 141601; Faizal, M., Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity (2011) J. Phys. A Math. Theor., 44 (40), p. 402001; Mattingly, D., Modern tests of Lorentz invariance (2005) Living Rev. Relat., 8, p. 1; Gomes, Y.M.P., Helayel-Neto, J.A., Limits on non-minimal Lorentz violating parameters through FCNC and LFV processes (2020) Eur. Phys. J. C, 80, p. 3; Maccione, L., γ -ray polarization constraints on Planck scale violations of special relativity (2008) Phys. Rev. D, 78 (10), p. 103003; Parker, S.R., Cavity bounds on higher-order Lorentz-violating coefficients (2011) Phys. Rev. Lett., 106 (18), p. 180401; Modanese, G., Time in quantum mechanics and the local non-conservation of the probability current (2018) Mathematics, 6, p. 9; Bisquert, J., Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk (2003) Phys. Rev. Lett., 91 (1), p. 010602; Wei, Y., Comment on fractional quantum mechanics and Fractional Schrödinger equation (2016) Phys. Rev. E, 93 (6), p. 066103; Laskin, N., Reply to comment on ‘Fractional quantum mechanics’ and ‘Fractional Schrödinger equation’ (2016) Phys. Rev. E, 93 (6), p. 066104; Lenzi, E.K., Solutions for a Schrödinger equation with a nonlocal term (2008) J. Math. Phys., 49 (3), p. 032108; Laskin, N., Fractional Schrödinger equation (2002) Phys. Rev. E, 66 (5), p. 056108; Laskin, N., Fractional quantum mechanics (2000) Phys. Rev. E, 62 (3), pp. 3135-3145; Zhang, Y., Propagation dynamics of a light beam in a fractional Schrödinger equation (2015) Phys. Rev. Lett., 115 (18), p. 180403; Turgeman, L., Carmi, S., Barkai, E., Fractional Feynman-Kac equation for non-brownian functionals (2009) Phys. Rev. Lett., 103 (19), p. 190201; Brockmann, D., Geisel, T., Lévy flights in inhomogeneous media (2003) Phys. Rev. Lett., 90 (17), p. 170601; Goncharenko, I., Gopinathan, A., Vicious Lévy flights (2010) Phys. Rev. Lett., 105 (19), p. 190601; Bardou, F., Subrecoil laser cooling and Lévy flights (1994) Phys. Rev. Lett., 72 (2), pp. 203-206; Egor, I.K., Schmalian, J., Flights and hydrodynamic superdiffusion on the dirac cone of graphene (2019) Phys. Rev. Lett., 123 (19), p. 195302; Soljac̆ić, M., Collisions of two solitons in an arbitrary number of coupled nonlinear Schrödinger equations (2003) Phys. Rev. Lett., 90 (25), p. 254102; Zhang, Y., Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation (2017) Opt. Express, 25, pp. 32401-32410; Lambiase, G., Scardigli, F., Lorentz violation and generalized uncertainty principle (2018) Phys. Rev. D, 97 (7), p. 075003; da Cruz, C.N., Lorentz violation with an invariant minimum speed as foundation of the uncertainty principle in Minkowski, dS and AdS spaces (2019) Mod. Phys. Lett. A, 34 (26), p. 1950212; Faizal, M., Khalil, M.M., Das, S., Time crystals from minimum time uncertainty (2016) Eur. Phys. J. C, 76, p. 1434; Faizal, M., Ali, A.F., Nassar, A., Generalized uncertainty principle as a consequence of the effective field theory (2017) Phys. Lett. B, 765, pp. 238-243; Magueijo, J., Smolin, L., Lorentz invariance with an invariant energy scale (2002) Phys. Rev. Lett., 88 (19), p. 190403; Magueijo, J., Smolin, L., Generalized Lorentz invariance with an invariant energy scale (2003) Phys. Rev. D, 67 (4), p. 044017; řava, P.H., Quantum gravity at a Lifshitz point (2009) Phys. Rev. D, 79 (8), p. 084008; Sotiriou, T.P., Visser, M., Weinfurtner, S., Phenomenologically viable Lorentz-violating quantum gravity (2009) Phys. Rev. Lett., 102 (25), p. 251601; Mewes, M., Signals for Lorentz violation in gravitational waves (2019) Phys. Rev. D, 99 (10), p. 104062; Galaverni, M., Sigl, G., Lorentz violation for photons and ultrahigh-energy cosmic rays (2008) Phys. Rev. Lett., 100 (2), p. 021102; Bourgoin, A., Testing Lorentz symmetry with lunar laser ranging (2016) Phys. Rev. Lett., 117 (24), p. 241301; Canè, F., Bound on Lorentz and CPT violating boost effects for the neutron (2004) Phys. Rev. Lett., 93 (23), p. 230801; Hohensee, M.A., Limits on violations of lorentz symmetry and the einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium (2013) Phys. Rev. Lett., 111 (5), p. 050401; Kober, M., Gauge theories under incorporation of a generalized uncertainty principle (2010) Phys. Rev. D, 82 (8), p. 085017; Kober, M., Electroweak theory with a minimal length (2011) Int. J. Mod. Phys. A, 26 (24), pp. 4251-4285; Faizal, M., Kruglov, S.I., Deformation of the dirac equation (2016) Int. J. Mod. Phys. D, 25 (1), p. 1650013; Faizal, M., Majumder, B., Incorporation of generalized uncertainty principle into Lifshitz field theories (2015) Ann. Phys., 357, pp. 49-58

Indexed by Scopus

Leave a Comment