Tailoring grain sizes of the biodegradable iron-based alloys by pre-additive manufacturing microalloying

Huang C.-C., Lam T.-N., Amalia L., Chen K.-H., Yang K.-Y., Muslih M.R., Singh S.S., Tsai P.-I., Lee Y.-T., Jain J., Lee S.Y., Lai H.-J., Huang W.-C., Chen S.-Y., Huang E.-W.

Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013, Taiwan; Department of Physics, College of Education, Can Tho University, Can Tho City, 900000, Viet Nam; Teknik Material dan Metalurgi, Institut Teknologi Kalimantan, Balikpapan, 76127, Indonesia; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan; Neutron Scattering Lab. PSTBM-BATAN, Kawasan PUSPIPTEK Serpong15314, Indonesia; Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; Department of Materials Science and Engineering, National Taiwan University, Taipei, 10607, Taiwan; Department of Materials Science and Engineering, Indian Institute of Technology, New Delhi, 110016, India; Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea; Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan; Laser and Additive Manufacturing Technology Center, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan


Abstract

We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two specific microalloying stoichiometries were reported, namely biodegradable iron powder with 99.5% purity (BDFe) and that with 98.5% (BDFe-Mo). Compared with the BDFe, the BDFe-Mo powder was found to have lower coefficient of thermal expansion (CTE) value and better oxidation resistance during consecutive heating and cooling cycles. The selective laser melting (SLM)-built BDFe-Mo exhibited high ultimate tensile strength (UTS) of 1200 MPa and fair elongation of 13.5%, while the SLM-built BDFe alloy revealed a much lower UTS of 495 MPa and a relatively better elongation of 17.5%, indicating the strength enhancement compared with the other biodegradable systems. Such an enhanced mechanical behavior in the BDFe-Mo was assigned to the dominant mechanism of ferrite grain refinement coupled with precipitate strengthening. Our findings suggest the tunability of outstanding strength-ductility combination by tailoring the pre-additive manufacturing microalloying elements with their proper concentrations. © 2021, The Author(s).


Journal

Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 9610, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105416997&doi=10.1038%2fs41598-021-89022-9&partnerID=40&md5=0be763356690244fe84b0d4ea5056d84

doi: 10.1038/s41598-021-89022-9

Issn: 20452322

Type: All Open Access, Gold, Green


References

(2020) Gartner Identifies Five Emerging Trends that Will Drive Technology Innovation for the Next Decade, , https://www.gartner.com/en/newsroom/press-releases/2020-08-18-gartner-identifies-five-emerging-trends-that-will-drive-technology-innovation-for-the-next-decade, STAMFORD, Conn. p; Middleton, J.C., Tipton, A.J., Synthetic biodegradable polymers as orthopedic devices (2000) Biomaterials, 21 (23), pp. 2335-2346. , COI: 1:CAS:528:DC%2BD3cXmslKmtrc%3D, PID: 11055281; Gilding, D.K., Reed, A.M., Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1 (1979) Polymer, 20 (12), pp. 1459-1464. , COI: 1:CAS:528:DyaL3cXhsVOlsLo%3D; Cha, P.-R., Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases (2013) Sci. Rep., 3 (1), p. 2367. , PID: 23917705; Yang, H., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications (2020) Nat. Commun., 11 (1), p. 401. , PID: 31964879, COI: 1:CAS:528:DC%2BB3cXksFahsb0%3D; Kannan, M.B., Biocompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications (2017) Sci. Rep., 7 (1), p. 15605. , PID: 29142320, COI: 1:CAS:528:DC%2BC1cXhsFWgu73F; Yusop, A.H.M., Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants (2015) Sci. Rep., 5 (1), p. 11194. , PID: 26057073; Huang, T., Zheng, Y., Uniform and accelerated degradation of pure iron patterned by Pt disc arrays (2016) Sci. Rep., 6 (1), p. 23627. , COI: 1:CAS:528:DC%2BC28Xlt1Kmu7g%3D, PID: 27033380; Witte, F., Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response (2007) J. Biomed. Mater. Res. Part A, 81 (3), pp. 748-756. , COI: 1:STN:280:DC%2BD2szitFKgtg%3D%3D; Sezer, N., Review of magnesium-based biomaterials and their applications (2018) J. Magn. Alloys, 6 (1), pp. 23-43. , COI: 1:CAS:528:DC%2BC1cXnsFertLg%3D; Peuster, M., Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta (2006) Biomaterials, 27 (28), pp. 4955-4962. , COI: 1:CAS:528:DC%2BD28XlvFaktrs%3D, PID: 16765434; Wegener, B., Development of a novel biodegradable porous iron-based implant for bone replacement (2020) Sci. Rep., 10 (1), p. 9141. , COI: 1:CAS:528:DC%2BB3cXhtFWmu7vE, PID: 32499489; Colombo, A., Karvouni, E., Biodegradable stents: “fulfilling the mission and stepping away” (2000) Circulation, 102 (4), pp. 371-373. , COI: 1:STN:280:DC%2BD3czptlKnsA%3D%3D, PID: 10908206; Chandra, G., Pandey, A., Biodegradable bone implants in orthopedic applications: a review (2020) Biocybern. Biomed. Eng., 40 (2), pp. 596-610; Peuster, M., A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits (2001) Heart, 86 (5), p. 563. , COI: 1:STN:280:DC%2BD3MrlsFOrsg%3D%3D, PID: 11602554; Carluccio, D., Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone scaffold applications (2020) Metall. Mater. Trans. A, 51 (7), pp. 3311-3334. , COI: 1:CAS:528:DC%2BB3cXovFKku7w%3D; Obayi, C.S., Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application (2016) Biomatter, 6 (1). , PID: 25482336; Huang, E.W., Hardening steels by the generation of transient phase using additive manufacturing (2019) Intermetallics, 109, pp. 60-67. , COI: 1:CAS:528:DC%2BC1MXltVWitrk%3D; Tseng, J.C., Deformations of Ti-6Al-4V additive-manufacturing-induced isotropic and anisotropic columnar structures: insitu measurements and underlying mechanisms (2020) Addit. Manuf., 35, p. 101322. , COI: 1:CAS:528:DC%2BB3cXhvV2nsbbM, PID: 32835025; Chae, H., Unravelling thermal history during additive manufacturing of martensitic stainless steel (2021) J. Alloys Compd., 857, p. 157555. , COI: 1:CAS:528:DC%2BB3cXitFGqsb%2FL, PID: 33071463; Tsai, P.-I., Multi-scale mapping for collagen-regulated mineralization in bone remodeling of additive manufacturing porous implants (2019) Mater. Chem. Phys., 230, pp. 83-92. , COI: 1:CAS:528:DC%2BC1MXlvVCqtrw%3D; Manakari, V., Parande, G., Gupta, M., Selective laser melting of magnesium and magnesium alloy powders: a review (2017) Metals, 7 (1), p. 2; Zhang, L.C., Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications (2016) Mater. Technol., 31 (2), pp. 66-76. , COI: 1:CAS:528:DC%2BC28Xms1Kgtro%3D; Song, B., Microstructure and tensile properties of iron parts fabricated by selective laser melting (2014) Opt. Laser Technol., 56, pp. 451-460. , COI: 1:CAS:528:DC%2BC3sXhs1yns7jN; Carluccio, D., Comparative study of pure iron manufactured by selective laser melting, laser metal deposition, and casting processes (2019) Adv. Eng. Mater., 21 (7), p. 1900049. , COI: 1:CAS:528:DC%2BC1MXit1Kktb3N; Calcagnotto, M., Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD (2010) Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 527 (10-11), pp. 2738-2746. , COI: 1:CAS:528:DC%2BC3cXisF2qurY%3D; Peng-Heng, C., Preban, A.G., The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel (1985) Acta Metall., 33 (5), pp. 897-903; Jiang, Z., Guan, Z., Lian, J., Effects of microstructural variables on the deformation behaviour of dual-phase steel (1995) Mater. Sci. Eng. A, 190 (1), pp. 55-64; Lenka, S., Effect of recalescence on microstructure and phase transformation in high carbon steel (2013) Mater. Sci. Technol., 29 (6), pp. 715-725. , COI: 1:CAS:528:DC%2BC3sXmvFWnsbk%3D; Yokota, T., Mateo, C.G., Bhadeshia, H.K.D.H., Formation of nanostructured steels by phase transformation (2004) Scr. Mater., 51 (8), pp. 767-770. , COI: 1:CAS:528:DC%2BD2cXmtFCgu7w%3D; Bajaj, P., Steels in additive manufacturing: a review of their microstructure and properties (2020) Mater. Sci. Eng. A, 772, p. 138633. , COI: 1:CAS:528:DC%2BC1MXit1GqtbbI; Sigel, A., Sigel, H., Sigel, R.K.O., Interrelations between essential metal ions and human diseases (2013) Metal Ions Life Sci., 13, pp. 415-450; Redlich, C., Quadbeck, P., Thieme, M., Kiebackb, B., Molybdenum—a biodegradable implant material for structural applications? (2020) Acta Biomater., 104, pp. 241-251. , COI: 1:CAS:528:DC%2BB3cXhtVeqt78%3D, PID: 31926333; Tan, J.H., Wong, W.L.E., Dalgarno, K.W., An overview of powder granulometry on feedstock and part performance in the selective laser melting process (2017) Addit. Manuf., 18, pp. 228-255; Abd-Elghany, K., Bourell, D.L., Property evaluation of 304L stainless steel fabricated by selective laser melting (2012) Rapid Prototyp. J., 18 (5), pp. 420-428; Touloukian, Y.S., (1994) Thermophysical Properties Research, Thermal Expansion: Metallic Elements and Alloys, , University Microfilms International; Hull, F., Effect of composition on thermal expansion of alloys used in power generation (1987) J. Mater. Eng., 9 (1), pp. 81-92. , COI: 1:CAS:528:DyaL2sXkvVahur4%3D; Aslam, I., Thermodynamic and kinetic behavior of low-alloy steels: an atomic level study using an Fe–Mn–Si–C modified embedded atom method (MEAM) potential (2019) Materialia, 8, p. 100473. , COI: 1:CAS:528:DC%2BB3cXmtVKnsLc%3D; Gray, D.E., (1972) American Institute of Physics Handbook; Hudok, D., Properties and selection: irons, steels, and high-performance alloys (1990) Met. Handbook, 1, pp. 200-211; Kozlovskii, Y.M., Stankus, S.V., The linear thermal expansion coefficient of iron in the temperature range of 130–1180 K (2019) J. Phys. Conf. Ser., 1382, p. 012181. , COI: 1:CAS:528:DC%2BB3cXhvVOqtbjF; Liu, Y.C., Sommer, F., Mittemeijer, E.J., Calibration of the differential dilatometric measurement signal upon heating and cooling; thermal expansion of pure iron (2004) Thermochim. Acta, 413 (1), pp. 215-225. , COI: 1:CAS:528:DC%2BD2cXhsVOnt70%3D; Denand, B., Carbon content evolution in austenite during austenitization studied by in situ synchrotron X-ray diffraction of a hypoeutectoid steel (2020) Materialia, 10, p. 100664. , COI: 1:CAS:528:DC%2BB3cXmvVCjsb4%3D; Armentani, E., Esposito, R., Sepe, R., The effect of thermal properties and weld efficiency on residual stresses in welding (2007) J. Achiev. Mater. Manuf. Eng., 1, p. 146; Li, C., Residual stress in metal additive manufacturing (2018) Procedia CIRP, 71, pp. 348-353; Mercelis, P., Kruth, J.P., Residual stresses in selective laser sintering and selective laser melting (2006) Rapid Prototyp. J., 12 (5), pp. 254-265; Yakout, M., Elbestawi, M.A., Veldhuis, S.C., A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L (2018) Addit. Manuf., 24, pp. 405-418. , COI: 1:CAS:528:DC%2BC1cXisVaksLnP; Liu, S., Oxide scales characterization of micro-alloyed steel at high temperature (2013) J. Mater. Process. Technol., 213 (7), pp. 1068-1075. , COI: 1:CAS:528:DC%2BC3sXlslyrurk%3D; Chen, R.Y., Yuen, W.Y.D., Short-time oxidation behavior of low-carbon, low-silicon steel in air at 850–1,180 °C––I: oxidation kinetics (2008) Oxid. Met., 70 (1-2), pp. 39-68. , COI: 1:CAS:528:DC%2BD1cXotF2lt74%3D; Chen, Y.-T., Biodegradation ZK50 magnesium alloy compression screws: mechanical properties, biodegradable characteristics and implant test (2020) J. Orthopaedic Sci., 25, pp. 1107-1115; Li, W., In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion (2020) Biomater. Sci., 8 (18), pp. 5071-5087. , COI: 1:CAS:528:DC%2BB3cXhsVKrsrfO, PID: 32812545; Sikora-Jasinska, M., Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications (2017) Mater. Sci. Eng. C, 81, pp. 511-521. , COI: 1:CAS:528:DC%2BC2sXhtlGksLnK; Zumdick, N.A., Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 (2019) Mater. Charact., 147, pp. 384-397. , COI: 1:CAS:528:DC%2BC1cXitlaksLbK; Hufenbach, J., Effect of selective laser melting on microstructure, mechanical, and corrosion properties of biodegradable FeMnCS for implant applications (2020) Adv. Eng. Mater., 22 (10), p. 2000182. , COI: 1:CAS:528:DC%2BB3MXoslygsrc%3D; Hermawan, H., Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy (2008) Powder Metall., 51 (1), pp. 38-45. , COI: 1:CAS:528:DC%2BD1cXnvFCls7s%3D; Yang, Y., A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying (2018) J. Mech. Behav. Biomed. Mater., 82, pp. 51-60. , COI: 1:CAS:528:DC%2BC1cXltFertr0%3D, PID: 29567530; Deng, Q., Fabrication of high-strength Mg–Gd–Zn–Zr alloy via selective laser melting (2020) Mater. Charact., 165, p. 110377. , COI: 1:CAS:528:DC%2BB3cXpvFemtLk%3D; Lejcek, P., Selective laser melting of pure iron: Multiscale characterization of hierarchical microstructure (2019) Mater. Charact., 154, pp. 222-232. , COI: 1:CAS:528:DC%2BC1MXhtFems7bE; Thijs, L., A study of the microstructural evolution during selective laser melting of Ti–6Al–4V (2010) Acta Mater., 58 (9), pp. 3303-3312. , COI: 1:CAS:528:DC%2BC3cXkt1GqtL4%3D; Amato, K.N., Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting (2012) Acta Mater., 60 (5), pp. 2229-2239. , COI: 1:CAS:528:DC%2BC38Xjs1Wns78%3D; Guan, K., Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel (2013) Mater. Des., 50, pp. 581-586. , COI: 1:CAS:528:DC%2BC3sXosFymtbk%3D; Thijs, L., Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder (2013) Acta Mater., 61 (5), pp. 1809-1819. , COI: 1:CAS:528:DC%2BC3sXjsVag; Song, B., Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts (2012) Surf. Coat. Technol., 206 (22), pp. 4704-4709. , COI: 1:CAS:528:DC%2BC38XotlSqsb4%3D; Callister, D.W., Jr., (2000) Materials Science and Engineering an Introduction, , 5, Wiley; Harwood, J., Strengthening Mechanisms in Solids (1960) Metals Park: ASM Seminar; Chen, C., Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides (2009) Mater. Sci. Eng. A, 499 (1-2), pp. 162-166. , COI: 1:CAS:528:DC%2BD1cXhsVaju7rK; Baker, R., Brandon, D., Nutting, J., The growth of precipitates (1959) Phil. Mag., 4 (48), pp. 1339-1345. , COI: 1:CAS:528:DyaF3cXnt1aqtw%3D%3D; Lee, W.-B., Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo (2002) Metall. Mater. Trans. A., 33 (6), p. 1689; Rodrigues, T.A., In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM) (2020) Addit. Manuf., 34, p. 101200. , COI: 1:CAS:528:DC%2BB3cXhsFaqurvJ; Ganeev, A.V., On the nature of high-strength state of carbon steel produced by severe plastic deformation (2014) IOP Conf. Ser. Mater. Sci. Eng., 63, p. 012128. , COI: 1:CAS:528:DC%2BC2cXhvFKhsbnL; Krielaart, G.P., Zwaag, S., Kinetics of γ → α phase transformation in Fe–Mn alloys containing low manganese (2013) Mater. Sci. Technol., 14 (1), pp. 10-18; Song, B., Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites (2017) Mater. Sci. Eng. A, 707, pp. 478-487. , COI: 1:CAS:528:DC%2BC2sXhsFOgu7zE; Kostryzhev, A., Comparative effect of Mo and Cr on microstructure and mechanical properties in NbV-microalloyed bainitic steels (2018) Metals, 8 (2), p. 134. , COI: 1:CAS:528:DC%2BC1cXisVamt7bE; Misra, R.D.K., Ultrahigh strength hot rolled microalloyed steels: microstructural aspects of development (2013) Mater. Sci. Technol., 17 (9), pp. 1119-1129; Sha, W., Development of structural steels with re resistant microstructures (2013) Mater. Sci. Technol., 18 (3), pp. 319-325. , COI: 1:CAS:528:DC%2BD38XislCru7Y%3D; ASTM E8/E8M-09 Standard Test Methods for Tension Testing of Metallic Materials (2011) ASTM; Toby, B.H., Von Dreele, R.B., GSAS-II: the genesis of a modern open-source all purpose crystallography software package (2013) J. Appl. Crystallogr., 46 (2), pp. 544-549. , COI: 1:CAS:528:DC%2BC3sXjvFWnu7c%3D; James, J.D., A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures (2001) Meas. Sci. Technol., 12 (3), pp. R1-R15. , COI: 1:CAS:528:DC%2BD3MXhvVKltb0%3D; Huang, E.W., Element effects on high-entropy alloy vacancy and heterogeneous lattice distortion subjected to quasi-equilibrium heating (2019) Sci. Rep., 9 (1), p. 14788. , PID: 31616021, COI: 1:CAS:528:DC%2BC1MXhvF2gs7jP

Indexed by Scopus

Leave a Comment