Synthesis and characterization of hydroxyapatite derived from milkfish bone by simple heat treatments

Lolo J.A., Ambali D.P.P., Jefriyanto W., Handayani D., Afridah W., Wikurendra E.A., Amalia R., Syafiuddin A.

Department of Physics Education, Universitas Kristen Indonesia Toraja, Tana Toraja South Sulawesi91811, Indonesia; Department of Civil Engineering, Universitas Kristen Indonesia Toraja, Tana Toraja South Sulawesi91811, Indonesia; Department of Public Health, Universitas Nahdlatul Ulama Surabaya, East Java, Surabaya, 60237, Indonesia; Department of Midwifery, Universitas Nahdlatul Ulama Surabaya, East Java, Surabaya, 60237, Indonesia


Abstract

The present study aimed to synthesize hydroxyapatite (HAp) from milkfish (Chanos chanos) bone by simple heat treatments ranging from 600 to 800 °C. The yield and color of synthesized powders before and after heat treatment were analyzed. The synthesized powders were characterized using Fourier transform infrared spectroscopy (FTIR) to identify the functional groups and X-ray diffraction (XRD) was employed to identify phase and crystallinity properties. This study found that the yield percentages were found to be approximately 50%. The FTIR characteristics exhibited the phosphate and carbonate groups at high temperatures (≥600 °C). In general, this study confirmed that the well-crystallized HAp can be synthesized by thermal treatment at a temperature of 160 °C for 48 h. © 2021 by the authors.

Biomaterial; Hydroxyapatite; Milkfish


Journal

Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 2, Art No , Page 2440 – 2449, Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110189746&doi=10.33263%2fBRIAC122.24402449&partnerID=40&md5=9a74df40d7dce62c626f583f2ed7877e

doi: 10.33263/BRIAC122.24402449

Issn: 20695837

Type:


References

Nikmatin, S., Syafiuddin, A., Kueh, A.B.H., Purwanto, Y.A., Effects of nanoparticle filler on thermo-physical properties of rattan powder-filled polypropylene composites (2015) Jur. Tek, 77, pp. 181-187. , https://doi.org/10.11113/jt.v77.6415; Nikmatin, S., Syafiuddin, A., Irwanto, D.A.Y., Properties of oil palm empty fruit bunch-filled recycled acrylonitrile butadiene styrene composites: Effect of shapes and filler loadings with random orientation (2016) BioResources, 12, pp. 1090-1101. , https://doi.org/10.15376/biores.12.1.1090-1101; Nikmatin, S., Syafiuddin, A., Hong Kueh, A.B., Maddu, A., Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles (2017) J. App. Res. Technol, 15, pp. 386-395. , https://doi.org/10.1016/j.jart.2017.03.008; Nikmatin, S., Hermawan, B., Irmansyah, I., Indro, M.N., Kueh, A.B.H., Syafiuddin, A., Evaluation of the performance of helmet prototypes fabricated from acrylonitrile butadiene styrene composites filled with natural resource (2019) Materials, 12, pp. 1-12. , https://doi.org/10.3390/ma12010034; Goh, K.W., Wong, Y.H., Ramesh, S., Chandran, H., Krishnasamy, S., Ramesh, S., Sidhu, A., Teng, W.D., Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation (2021) Ceram. Int, 47, pp. 8879-8887. , https://doi.org/10.1016/j.ceramint.2020.12.009; Es-saddik, M., Laasri, S., Taha, M., Laghzizil, A., Guidara, A., Chaari, K., Bouaziz, J., Nunzi, J.M., Effect of the surface chemistry on the stability and mechanical properties of the Zirconia-Hydroxyapatite bioceramic (2021) Surf. Interfaces, 23, p. 100980. , https://doi.org/10.1016/j.surfin.2021.100980; Xu, S., Wu, Q., Guo, Y., Ning, C., Dai, K., Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity (2021) Mater. Sci. Eng. C Mater. Biol. Appl, 118, p. 111493. , https://doi.org/10.1016/j.msec.2020.111493; Bazin, T., Magnaudeix, A., Mayet, R., Carles, P., Julien, I., Demourgues, A., Gaudon, M., Champion, E., Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics (2021) Ceram. Int, 47, pp. 13644-13654. , https://doi.org/10.1016/j.ceramint.2021.01.225; Herawati, V.E., Fuad, A., Pinandoyo, P., Hutabarat, J., Darmanto, Y., Wirasatriya, A., Nugroho, D., Radjasa, O.K., Maggot Meal (Hermetia illucens) substitution on fish meal as source of animal protein to growth, feed utilization efficiency, and survival rate of milkfish (Chanos chanos) (2020) Hayati, 27, pp. 154-154. , https://doi.org/10.4308/hjb.27.2.154; Asadollahzadeh, M., Rabiee, S.M., Salimi-Kenari, H., In vitro apatite formation of calcium phosphate composite synthesized from fish bone (2019) Int. J. Appl. Ceram. Technol, 16, pp. 1969-1978. , https://doi.org/10.1111/ijac.13297; Sharifianjazi, F., Esmaeilkhanian, A., Moradi, M., Pakseresht, A., Asl, M.S., Karimi-Maleh, H., Jang, H.W., Varma, R.S., Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering (2021) Mater. Sci. Eng. B, 264, p. 114950. , https://doi.org/10.1016/j.mseb.2020.114950; Nicoara, A.I., Neacsu, I.A., Ene, V.L., Vasile, B.S., Ficai, A., Andronescu, E., Hydroxyapatite/carbon based biocomposite scaffolds as prospective materials for bone tissue engineering (2019) UPB Sci. Bull. Ser. B Chem. Mater. Sci, 81, pp. 107-120; Ali, A.F., Alrowaili, Z.A., El-Giar, E.M., Ahmed, M.M., El-Kady, A.M., Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template (2021) Ceram. Int, 47, pp. 3928-3937. , https://doi.org/10.1016/j.ceramint.2020.09.256; Varadavenkatesan, T., Vinayagam, R., Pai, S., Kathirvel, B., Pugazhendhi, A., Selvaraj, R., Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings (2021) Prog. Org. Coat, 151, p. 106056. , https://doi.org/10.1016/j.porgcoat.2020.106056; Sultana, S., Hossain, M.S., Mahmud, M., Mobarak, M.B., Kabir, M.H., Sharmin, N., Ahmed, S., UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity (2021) RSC Adv, 11, pp. 3686-3694. , https://doi.org/10.1039/D0RA09673C; Neacsu, I.A., Serban, A.P., Nicoara, A.I., Trusca, R., Ene, V.L., Iordache, F., Biomimetic composite scaffold based on naturally derived biomaterials (2020) Polymers, 12, p. 1161. , https://doi.org/10.3390/polym12051161; Yelten-Yilmaz, A., Yilmaz, S., Wet chemical precipitation synthesis of hydroxyapatite (HA) powders (2018) Ceram. Int, 44, pp. 9703-9710. , https://doi.org/10.1016/j.ceramint.2018.02.201; Malla, K.P., Regmi, S., Nepal, A., Bhattarai, S., Yadav, R.J., Sakurai, S., Adhikari, R., Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone (2020) Int. J. Biomater, 2020, p. 1690178. , https://doi.org/10.1155/2020/1690178; Kumar, G.S., Karunakaran, G., Girija, E.K., Kolesnikov, E., Minh, N.V., Gorshenkov, M.V., Kuznetsov, D., Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method (2018) Ceram. Int, 44, pp. 11257-11264. , https://doi.org/10.1016/j.ceramint.2018.03.170; Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., Du, M., Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts (2018) Mater. Sci. Eng. C Mater. Biol. Appl, 90, pp. 706-712. , https://doi.org/10.1016/j.msec.2018.04.026; Jaber, H.L., Hammood, A.S., Parvin, N., Synthesis and characterization of hydroxyapatite powder from natural Camelus bone (2018) J. Aust. Ceram. Soc, 54, pp. 1-10. , https://doi.org/10.1007/s41779-017-0120-0; Ding, R., zhang, J., Koushki, E., Tayebee, R., Ding, X., Nonlinear photoacoustic and optical properties of hydroxyapatite and calcium phosphate. Towards a new method for the densitometry of bones (2021) Optik, 226, p. 165922. , https://doi.org/10.1016/j.ijleo.2020.165922; Asgari, N., Rajabi, M., Enhancement of mechanical properties of hydroxyapatite coating prepared by electrophoretic deposition method (2021) Int. J. Appl. Ceram. Technol, 18, pp. 147-153. , https://doi.org/10.1111/ijac.13638; Du, M., Chen, J., Liu, K., Xing, H., Song, C., Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair (2021) Compos. Part B Eng, 215, p. 108790. , https://doi.org/10.1016/j.compositesb.2021.108790; Ahangari, M., Johar, M.H., Saremi, M., Hydroxyapatite-carboxymethyl cellulose-graphene composite coating development on AZ31 magnesium alloy: Corrosion behavior and mechanical properties (2021) Ceram. Int, 47, pp. 3529-3539. , https://doi.org/10.1016/j.ceramint.2020.09.197; Li, J., Wu, M., Du, H., Wang, B., Li, Y., Huan, W., Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads (2021) New J. Chem, 45, pp. 4601-4610; Reis Lavagnini, I., Campos, J.V., Storion, A.G., Lobo, A.O., Raj, R., Maria de Jesus Agnolon Pallone, E., Influence of flash sintering on phase transformation and conductivity of hydroxyapatite (2021) Ceram. Int, 47, pp. 9125-9131. , https://doi.org/10.1016/j.ceramint.2020.12.036; Veljović, D., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R., Janaćković, D., The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics (2011) Ceram. Int, 37, pp. 471-479. , https://doi.org/10.1016/j.ceramint.2010.09.014; Ma, J., Xia, M., Zhu, S., Wang, F., A new alendronate doped hap nanomaterial for pb2+, cu2+ and cd2+ effect absorption (2020) J. Hazard. Mater, 400, p. 123143. , https://doi.org/10.1016/j.jhazmat.2020.123143; Venkatesan, J., Kim, S.K., Effect of temperature on isolation and characterization of hydroxyapatite from tuna (thunnus obesus) bone (2010) Materials, 3, pp. 4761-4772. , https://doi.org/10.3390/ma3104761; Pallela, R., Venkatesan, J., Kim, S.K., Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone (2011) Ceram. Int, 37, pp. 3489-3497. , https://doi.org/10.1016/j.ceramint.2011.06.004; Kim, S.-K., Mendis, E., Bioactive compounds from marine processing byproducts – A review (2006) Food Res. Int, 39, pp. 383-393. , https://doi.org/10.1016/j.foodres.2005.10.010; Ozawa, M., Suzuki, S., Microstructural development of natural hydroxyapatite originated from fishbone waste through heat treatment (2002) J. Am. Ceram. Soc, 85, pp. 1315-1317. , https://doi.org/10.1111/j.1151-2916.2002.tb00268.x; Berthomieu, C., Hienerwadel, R., Fourier transform infrared (FTIR) spectroscopy (2009) Photosynthesis Research, 101, pp. 157-170. , https://doi.org/10.1007/s11120-009-9439-x; Prabakaran, K., Rajeswari, S., Development of hydroxyapatite from natural fish bone through heat treatment (2006) Trends Biomater. Artif. Organs, 20, pp. 20-23; Neacsu, I.A., Arsenie, L.V., Trusca, R., Ardelean, I.L., Mihailescu, N., Mihailescu, I.N., Ristoscu, C., Andronescu, E., Biomimetic collagen/zn2+-substituted calcium phosphate composite coatings on titanium substrates as prospective bioactive layer for implants: A comparative study spin coating vs (2019) MAPLE. Nanomaterials, 9, p. 692. , https://doi.org/10.3390/nano9050692; Mondal, S., Mondal, B., Dey, A., Mukhopadhyay, S.S., Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes (2012) J. Miner. Mater. Charact. Eng, 11, pp. 55-67. , https://doi.org/10.4236/jmmce.2012.111005; Wang, Y., Li, R., Liu, W., Cheng, L., Jiang, Q., Zhang, Y., Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils (2019) Environ. Sci. Pollut. Res, 26, pp. 26674-26684. , https://doi.org/10.1007/s11356-019-05887-4; Prabakaran, K., Rajeswari, S., Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template (2009) Spectrochim. Acta. A Mol. Biomol. Spectrosc, 74, pp. 1127-1134. , https://doi.org/10.1016/j.saa.2009.09.021; Yu, W., Sun, R., Guo, Z., Wang, Z., He, Y., Lu, G., Chen, P., Chen, K., Novel fluoridated hydroxyapatite/mao composite coating on az31b magnesium alloy for biomedical application (2019) Appl. Surf. Sci, 464, pp. 708-715. , https://doi.org/10.1016/j.apsusc.2018.09.148; Liu, Y.-C., Lin, G.S., Wang, J.-Y., Cheng, C.-S., Yang, Y.-C., Lee, B.-S., Tung, K.-L., Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying (2018) Surf Coat Tech, 349, pp. 357-363. , https://doi.org/10.1016/j.surfcoat.2018.06.010; Askari, N., Yousefpour, M., Rajabi, M., Determination of the optimum amount of iodine in electrophoretic deposition of hydroxyapatite (HA) nanoparticles (2020) J. Aust. Ceram. Soc, 56, pp. 1053-1059. , https://doi.org/10.1007/s41779-020-00450-8; Rodríguez-Lugo, V., Karthik, T.V.K., Mendoza-Anaya, D., Rubio-Rosas, E., Villaseñor Cerón, L.S., Reyes-Valderrama, M.I., Salinas-Rodríguez, E., Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties (2018) R. Soc. Open Sci, 5, p. 180962. , https://doi.org/10.1098/rsos.180962; Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A.B.H., Salim, M.R., Novel weed-extracted silver nanoparticles and their antibacterial appraisal against a rare bacterium from river and sewage treatment plan (2018) Nanomaterials, 8, pp. 1-17. , https://doi.org/10.3390/nano8010009; Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A.B.H., Salim, M.R., Zaini, M.A.A., Silver nanoparticles in the water environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective (2018) Sci. Rep, 8, pp. 1-15. , https://doi.org/10.1038/s41598-018-19375-1; Mostafa, A.A.-F., Elshikh, M.S., Al-Askar, A.A., Hadibarata, T., Yuniarto, A., Syafiuddin, A., Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium (2019) Bioprocess Biosyst. Eng, 42, pp. 1483-1494. , https://doi.org/10.1007/s00449-019-02144-3; Nurul Aini, A., Al Farraj, D.A., Endarko, E., Rubiyanto, A., Nur, H., Al Khulaifi, M.M., Hadibarata, T., Syafiuddin, A., A new green method for the synthesis of silver nanoparticles and their antibacterial activities against gram‐positive and gram‐negative bacteria (2019) J. Chin. Chem. Soc, 66, pp. 705-712. , https://doi.org/10.1002/jccs.201800412; Syafiuddin, A., Salmiati, S., Hadibarata, T., Salim, M.R., Kueh, A.B.H., Suhartono, S., Removal of silver nanoparticles from water environment: Experimental, mathematical formulation, and cost analysis (2019) Water Air Soil Pollut, 230, pp. 102-117. , https://doi.org/10.1007/s11270-019-4143-8; Syafiuddin, A., Fulazzaky, M.A., Salmiati, S., Kueh, A.B.H., Fulazzaky, M., Salim, M.R., Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review (2020) Nano. Env. Engg, 5, pp. 1-18. , https://doi.org/10.1007/s41204-019-0065-3; Syafiuddin, A., Fulazzaky, M.A., Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi (2021) Biotechnol. Rep, 29, p. e00573. , https://doi.org/10.1016/j.btre.2020.e00573

Indexed by Scopus

Leave a Comment