Sunda arc mantle source δ18O value revealed by intracrystal isotope analysis

Deegan F.M., Whitehouse M.J., Troll V.R., Geiger H., Jeon H., le Roux P., Harris C., van Helden M., González-Maurel O.

Department of Earth Sciences, Natural Resources and Sustainable Development (NRHU), Uppsala University, Uppsala, Sweden; Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden; Faculty of Geological Engineering, Universitas Padjajaran (UNPAD), Bandung, Indonesia; Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, im Breisgau, Germany; Department of Geological Sciences, University of Cape Town, Cape Town, South Africa; Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands


Abstract

Magma plumbing systems underlying subduction zone volcanoes extend from the mantle through the overlying crust and facilitate protracted fractional crystallisation, assimilation, and mixing, which frequently obscures a clear view of mantle source compositions. In order to see through this crustal noise, we present intracrystal Secondary Ion Mass Spectrometry (SIMS) δ18O values in clinopyroxene from Merapi, Kelut, Batur, and Agung volcanoes in the Sunda arc, Indonesia, under which the thickness of the crust decreases from ca. 30 km at Merapi to ≤20 km at Agung. Here we show that mean clinopyroxene δ18O values decrease concomitantly with crustal thickness and that lavas from Agung possess mantle-like He-Sr-Nd-Pb isotope ratios and clinopyroxene mean equilibrium melt δ18O values of 5.7 ‰ (±0.2 1 SD) indistinguishable from the δ18O range for Mid Ocean Ridge Basalt (MORB). The oxygen isotope composition of the mantle underlying the East Sunda Arc is therefore largely unaffected by subduction-driven metasomatism and may thus represent a sediment-poor arc end-member. © 2021, The Author(s).


Journal

Nature Communications

Publisher: Nature Research

Volume 12, Issue 1, Art No 3930, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108667919&doi=10.1038%2fs41467-021-24143-3&partnerID=40&md5=d6f64cd478ac338c749300907ca48500

doi: 10.1038/s41467-021-24143-3

Issn: 20411723

Type: All Open Access, Gold, Green


References

Kiser, E., Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA (2016) Geology, 44, pp. 411-414; Cashman, K.V., Sparks, R.S.J., Blundy, J.D., Vertically extensive and unstable magmatic systems: a unified view of igneous processes (2017) Science, 355, p. 1280. , COI: 1:CAS:528:DC%2BC2sXksFaksb0%3D; Putirka, K.D., Down the crater: where magmas are stored and why they Erupt (2017) Elements, 13, pp. 11-16; Chaussard, E., Amelung, F., Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR (2012) Geophys. Res. Lett., 39, pp. 6-11; Chaussard, E., Amelung, F., Regional controls on magma ascent and storage in volcanic arcs (2014) Geochem. Geophys. Geosyst., 15, pp. 1407-1418; Dahren, B., Magma plumbing beneath Anak Krakatau volcano, Indonesia: Evidence for multiple magma storage regions (2012) Contrib. Mineral. Petrol., 163, pp. 631-651. , COI: 1:CAS:528:DC%2BC38XjvVWjsbY%3D; Ratdomopurbo, A., Poupinet, G., An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983-1994 (2000) J. Volcanol. Geotherm. Res., 100, pp. 193-214. , COI: 1:CAS:528:DC%2BD3cXkvVyqsLo%3D; Innocenti, S., del Marmol, M.A., Voight, B., Andreastuti, S., Furman, T., Textural and mineral chemistry constraints on evolution of Merapi Volcano, Indonesia (2013) J. Volcanol. Geotherm. Res., 261, pp. 20-37. , COI: 1:CAS:528:DC%2BC3sXis1Ohurc%3D; Nadeau, O., Williams-Jones, A.E., Stix, J., Magmatic-hydrothermal evolution and devolatilization beneath Merapi volcano, Indonesia (2013) J. Volcanol. Geotherm. Res., 261, pp. 50-68. , COI: 1:CAS:528:DC%2BC3sXnsFSqt74%3D; Chadwick, J.P., Troll, V.R., Waight, T.E., van der Zwan, F.M., Schwarzkopf, L.M., Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system (2013) Contrib. Mineral. Petrol., 165, pp. 259-282. , COI: 1:CAS:528:DC%2BC3sXhtV2ju7k%3D; Preece, K., Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia (2014) Contrib. Mineral. Petrol., 168 (1-25); Deegan, F.M., Pyroxene standards for SIMS oxygen isotope analysis and their application to Merapi volcano, Sunda arc, Indonesia (2016) Chem. Geol., 447, pp. 1-10. , COI: 1:CAS:528:DC%2BC28XhslSgtrbM; Jeffery, A.J., The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia (2013) Contrib. Mineral. Petrol., 166, pp. 275-308. , COI: 1:CAS:528:DC%2BC3sXpsFCnsr0%3D; Geiger, H., Multi-level magma plumbing at Agung and Batur volcanoes increases risk of hazardous eruptions (2018) Sci. Rep., 8, pp. 1-14. , COI: 1:CAS:528:DC%2BC1cXitVSlu7zK; Sheppard, S.M.F., Harris, C., Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water (1985) Contrib. Mineral. Petrol., 91, pp. 74-81. , COI: 1:CAS:528:DyaL2MXlvVWht7c%3D; Davidson, J.P., Hora, J.M., Garrison, J.M., Dungan, M.A., Crustal forensics in arc magmas (2005) J. Volcanol. Geotherm. Res., 140, pp. 157-170. , COI: 1:CAS:528:DC%2BD2MXovVaq; Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of Central Chile (1988) Contrib. Mineral. Petrol., 98, pp. 455-489. , COI: 1:CAS:528:DyaL1cXksVWjsbc%3D; Taylor, W.R., Sheppard, S.M.F., Igneous rocks: 1. Processes of isotopic fractionation and isotope systematics (1986) Rev. Miner., 16, pp. 227-271; Adam, J., Turner, S., Rushmer, T., The genesis of silicic arc magmas in shallow crustal cold zones (2016) Lithos, 264, pp. 472-494. , COI: 1:CAS:528:DC%2BC28Xhtleitr3N; González-Maurel, O., Constraining the sub-arc, parental magma composition for the giant Altiplano-Puna Volcanic Complex, northern Chile (2020) Sci. Rep., 10; Deegan, F.M., Troll, V.R., Geiger, H., Forensic probe of Bali’s great volcano (2019) Eos, Trans. Am. Geophys. Union, 100, pp. 26-30; Dallai, L., Freda, C., Gaeta, M., Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas (2004) Contrib. Mineral. Petrol., 148, pp. 247-263. , COI: 1:CAS:528:DC%2BD2cXotl2rsrs%3D; Macpherson, C.G., Gamble, J.A., Mattey, D.P., Oxygen isotope geochemistry of lavas from an oceanic to continental arc transition, Kermadec-Hikurangi margin, SW Pacific (1998) Earth Planet. Sci. Lett., 160, pp. 609-621. , COI: 1:CAS:528:DyaK1cXmt1Wqu7o%3D; Bindeman, I.N., Ponomareva, V.V., Bailey, J.C., Valley, J.W., Volcanic arc of Kamchatka: A province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust (2004) Geochim. Cosmochim. Acta, 68, pp. 841-865. , COI: 1:CAS:528:DC%2BD2cXhtVeju70%3D; Davidson, J.P., Harmon, R.S., Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles (1989) Earth Planet. Sci. Lett., 95, pp. 255-270. , COI: 1:CAS:528:DyaK3cXlvF2mtg%3D%3D; Harmon, R.S., Gerbe, M.C., The 1982-83 eruption at Galunggung volcano, Java (Indonesia): Oxygen isotope geochemistry of a chemically zoned magma chamber (1992) J. Petrol., 33, pp. 585-609. , COI: 1:CAS:528:DyaK3sXht1ylsrY%3D; Thirlwall, M.F., Graham, A.M., Arculus, R.J., Harmon, R.S., Macpherson, C.G., Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles (1996) Geochim. Cosmochim. Acta, 60, pp. 4785-4810. , COI: 1:CAS:528:DyaK2sXmtlKmtg%3D%3D; Eiler, J.M., Oxygen isotope geochemistry of oceanic-arc lavas (2000) J. Petrol., 41, pp. 229-256. , COI: 1:CAS:528:DC%2BD3cXotVKluw%3D%3D; Gertisser, R., Keller, J., Trace element and Sr, Nd, Pb and O isotope variations in Medium-K and High-K volcanic rocks from Merapi volcano, Central Java, Indonesia: Evidence for the involvement of subducted sediments in Sunda Arc magma genesis (2003) J. Petrol., 44, pp. 457-489. , COI: 1:CAS:528:DC%2BD3sXis12jurs%3D; Handley, H.K., Macpherson, C.G., Davidson, J.P., Geochemical and Sr-O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, West Java, Indonesia (2010) Contrib. Mineral. Petrol., 159, pp. 885-908. , COI: 1:CAS:528:DC%2BC3cXls1Wnsbw%3D; Troll, V.R., Magmatic differentiation processes at Merapi Volcano: Inclusion petrology and oxygen isotopes (2013) J. Volcanol. Geotherm. Res., 261, pp. 38-49. , COI: 1:CAS:528:DC%2BC3sXht1Ggt73N; Dallai, L., Bianchini, G., Avanzinelli, R., Natali, C., Conticelli, S., Heavy oxygen recycled into the lithospheric mantle (2019) Sci. Rep., 9, pp. 1-7. , COI: 1:CAS:528:DC%2BC1MXht1CnsrfK; Eiler, J., Stolper, E.M., McCanta, M.C., Intra- and intercrystalline oxygen isotope variations in minerals from basalts and peridotites (2011) J. Petrol., 52, pp. 1393-1413. , COI: 1:CAS:528:DC%2BC3MXpt1Ogurg%3D; Budd, D.A., Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz (2017) Sci. Rep., 7, pp. 1-11. , COI: 1:CAS:528:DC%2BC1cXhs1CltLvP; Borisova, A.Y., Oxygen isotope heterogeneity of arc magma recorded in plagioclase from the 2010 Merapi eruption (Central Java, Indonesia) (2016) Geochim. Cosmochim. Acta, 190, pp. 13-34. , COI: 1:CAS:528:DC%2BC28XhtVCmurrP; Handley, H.K., Davidson, J.P., Macpherson, C.G., Stimac, J.A., Untangling differentiation in arc lavas: constraints from unusual minor and trace element variations at Salak Volcano, Indonesia (2008) Chem. Geol., 255, pp. 360-376. , COI: 1:CAS:528:DC%2BD1cXhtFOjsb7K; Handley, H.K., Macpherson, C.G., Davidson, J.P., Berlo, K., Lowry, D., Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex (2007) J. Petrol., 48, pp. 1155-1183. , COI: 1:CAS:528:DC%2BD2sXntVKqtrc%3D; Handley, H.K., Timescales of magma ascent and degassing and the role of crustal assimilation at Merapi volcano (2006–2010), Indonesia: Constraints from uranium-series and radiogenic isotopic compositions (2018) Geochim. Cosmochim. Acta, 222, pp. 34-52. , COI: 1:CAS:528:DC%2BC2sXhslemtrbP; Curray, J.R., Shor, G.G., Raitt, R.W., Henry, M., Seismic refraction and reflection studies of crustal structure of the Eastern Sunda and Western Banda Arcs (1977) J. Geophys. Res., 82, pp. 2479-2489; Li, C.F., Wang, J., Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia (2016) Mar. Geophys. Res., 37, pp. 1-20; Wölbern, I., Rümpker, G., Crustal thickness beneath Central and East Java (Indonesia) inferred from P receiver functions (2016) J. Asian Earth Sci., 115, pp. 69-79; House, B.M., Bebout, G.E., Hilton, D.R., Carbon cycling at the Sunda margin, Indonesia: a regional study with global implications (2019) Geology, 47, pp. 483-486. , COI: 1:CAS:528:DC%2BC1MXhsFOhtb3N; Plank, T., Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle (1998) Chem. Geol., 145, pp. 325-394. , COI: 1:CAS:528:DyaK1cXjtlOnur4%3D; Kopp, H., The Java margin revisited: Evidence for subduction erosion off Java (2006) Earth Planet. Sci. Lett., 242, pp. 130-142. , COI: 1:CAS:528:DC%2BD28XptVWltw%3D%3D; Davidson, J.P., The Nevados de Payachata volcanic region (18°S/69°W, N. Chile) II. Evidence for widespread crustal involvement in Andean magmatism (1990) Contrib. Mineral. Petrol., 105, pp. 412-432. , COI: 1:CAS:528:DyaK3MXks1Ortg%3D%3D; Mattey, D., Lowry, D., Macpherson, C., Oxygen isotope composition of mantle peridotite (1994) Earth Planet. Sci. Lett., 128, pp. 231-241. , COI: 1:CAS:528:DyaK2MXjtlOmsbk%3D; Hilton, D.R., Craig, H., A helium isotope transect along the Indonesian archipelago (1989) Nature, 342, pp. 906-908. , COI: 1:CAS:528:DyaK3cXhtVagtLY%3D; Cooper, K.M., Eiler, J.M., Sims, K.W.W., Langmuir, C.H., Distribution of recycled crust within the upper mantle: Insights from the oxygen isotope composition of MORB from the Australian-Antarctic discordance (2009) Geochem. Geophys. Geosyst, 10; Ito, E., White, W.M., Göpel, C., The O, Sr, Nd and Pb isotope geochemistry of MORB (1987) Chem. Geol., 62, pp. 157-176. , COI: 1:CAS:528:DyaL2sXksVegt7g%3D; Eiler, J.M., Oxygen isotope variations in ocean island basalt phenocrysts (1997) Geochim. Cosmochim. Acta, 61, pp. 2281-2293. , COI: 1:CAS:528:DyaK2sXjvFSrtL4%3D; Regier, M.E., An oxygen isotope test for the origin of Archean mantle roots (2018) Geochem. Perspect. Lett., 9, pp. 6-10; Handley, H.K., Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia (2014) Geochim. Cosmochim. Acta, 139, pp. 205-226; Chadwick, J.P., Carbonate assimilation at Merapi Volcano, Java, Indonesia: Insights from crystal isotope stratigraphy (2007) J. Petrol., 48, pp. 1793-1812; Whitford, D.J., Strontium isotopic studies of the volcanic rocks of the Saunda arc, Indonesia, and their petrogenetic implications (1975) Geochim. Cosmochim. Acta, 39, pp. 1287-1302. , COI: 1:CAS:528:DyaE28Xns12g; Borisova, A.Y., Highly explosive 2010 Merapi eruption: evidence for shallow-level crustal assimilation and hybrid fluid (2013) J. Volcanol. Geotherm. Res., 261, pp. 193-208. , COI: 1:CAS:528:DC%2BC3sXht1GgtbvK; Gasparon, M., Hilton, D.R., Varne, R., Crustal contamination processes traced by helium isotopes: examples from the Sunda arc, Indonesia (1994) Earth Planet. Sci. Lett., 126, pp. 15-22. , COI: 1:CAS:528:DyaK2cXlvVeqsrY%3D; Troll, V.R., Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia (2012) Geophys. Res. Lett., 39, pp. 1-6. , COI: 1:CAS:528:DC%2BC38XhtlWhsrrP; Whitley, S., Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas (2019) Sci. Rep., 9, pp. 1-11. , COI: 1:CAS:528:DC%2BC1MXht1CnsrfL; Smyth, H.R., Hall, R., Nichols, G.J., Cenozoic volcanic arc history of East Java, Indonesia: the stratigraphic record of eruptions on an active continental margin (2008) Spec. Pap. Geol. Soc. Am., 436, pp. 199-222; Kita, N.T., Ushikubo, T., Fu, B., Valley, J.W., High precision SIMS oxygen isotope analysis and the effect of sample topography (2009) Chem. Geol., 264, pp. 43-57. , COI: 1:CAS:528:DC%2BD1MXmt1Ggt70%3D; Whitehouse, M.J., Nemchin, A.A., High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS (2009) Chem. Geol., 261, pp. 32-42. , COI: 1:CAS:528:DC%2BD1MXjsVersr0%3D; Harris, C., Vogeli, J., Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: Constraints on melting and emplacement mechanisms (2010) South Afr. J. Geol., 113, pp. 401-412. , COI: 1:CAS:528:DC%2BC3MXjsFOmsL8%3D; Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., Spicuzza, M.J., UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating (1995) Geochim. Cosmochim. Acta, 59, pp. 5223-5231. , COI: 1:CAS:528:DyaK28XltFyi; Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks (2006) Earth Planet. Sci. Lett., 244, pp. 218-233. , COI: 1:CAS:528:DC%2BD28XjtVOnsbY%3D; Schuhmacher, M., Fernandes, F., de Chambost, E., Achieving high reproducibility isotope ratios with the Cameca IMS 1270 in the multicollection mode (2004) Appl. Surf. Sci., 231-232, pp. 878-882. , COI: 1:CAS:528:DC%2BD2cXkvVSltr0%3D; Kita, N.T., Origin of ureilites inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani 319 polymict ureilite (2004) Geochim. Cosmochim. Acta, 68, pp. 4213-4235. , COI: 1:CAS:528:DC%2BD2cXot1Ogurk%3D; Harris, C., Dreyer, T., le Roux, P., Petrogenesis of peralkaline granite dykes of the Straumsvola complex, western Dronning Maud Land, Antarctica (2018) Contrib. Mineral. Petrol., 173, pp. 1-24. , COI: 1:CAS:528:DC%2BC2sXhvVOjs77I; Howarth, G.H., Moore, A.E., Harris, C., van der Meer, Q.H.A., le Roux, P., Crustal versus mantle origin of carbonate xenoliths from Kimberley region kimberlites using C-O-Sr-Nd-Pb isotopes and trace element abundances (2019) Geochim. Cosmochim. Acta, 266, pp. 258-273. , COI: 1:CAS:528:DC%2BC1MXmtFKgtbs%3D; Pin, C., Briot, D., Bassin, C., Poitrasson, F., Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography (1994) Anal. Chim. Acta, 298, pp. 209-217. , COI: 1:CAS:528:DyaK2MXitlWmsLo%3D; Jochum, K.P., GeoReM: A new geochemical database for reference materials and isotopic standards (2005) Geostand. Geoanal. Res., 29, pp. 333-338. , COI: 1:CAS:528:DC%2BD28XjtFegsbY%3D; van Helden, M.J., (2011) Along Arc Magmatic Diversity within the Central Sunda Arc, Indonesia, , Vrije Universiteit Amsterdam, Netherlands; Luais, B., Telouk, P., Albaréde, F., Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry (1997) Geochim. Cosmochim. Acta, 61, pp. 4847-4854. , COI: 1:CAS:528:DyaK1cXhslCqsQ%3D%3D; Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M., Pearson, D.G., Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites (2006) J. Petrol., 47, pp. 1119-1146. , COI: 1:CAS:528:DC%2BD28XktlSju7w%3D; Ryan, W.B.F., Global multi-resolution topography synthesis (2009) Geochem. Geophys. Geosyst. Q, 3014 (10); Troch, J., Ellis, B.S., Harris, C., Bachmann, O., Bindeman, I.N., Low-δ18O silicic magmas on Earth: a review (2020) Earth-Science Rev, 208. , &

Indexed by Scopus

Leave a Comment