Submarine landslide megablocks show half of Anak Krakatau island failed on December 22nd, 2018

Hunt J.E., Tappin D.R., Watt S.F.L., Susilohadi S., Novellino A., Ebmeier S.K., Cassidy M., Engwell S.L., Grilli S.T., Hanif M., Priyanto W.S., Clare M.A., Abdurrachman M., Udrekh U.

National Oceanography Centre, Southampton, United Kingdom; British Geological Survey (BGS), Nottingham, United Kingdom; University College London (UCL), London, United Kingdom; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom; Marine Geological Institute, Bandung, Indonesia; School of Earth and Environment, University of Leeds, Leeds, United Kingdom; Department of Earth Sciences, University of Oxford, Oxford, United Kingdom; Department of Ocean Engineering, University of Rhode Island (URI), Narragansett, RI, United States; Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia; Department of Geological Engineering, Institut Teknologi Bandung, Bandung, Indonesia; Badan Pengkajian dan Penerapan Teknologi, PTRRB-TPSA, DKI Jakarta, Java, Jakarta, Indonesia


Abstract

As demonstrated at Anak Krakatau on December 22nd, 2018, tsunamis generated by volcanic flank collapse are incompletely understood and can be devastating. Here, we present the first high-resolution characterisation of both subaerial and submarine components of the collapse. Combined Synthetic Aperture Radar data and aerial photographs reveal an extensive subaerial failure that bounds pre-event deformation and volcanic products. To the southwest of the volcano, bathymetric and seismic reflection data reveal a blocky landslide deposit (0.214 ± 0.036 km3) emplaced over 1.5 km into the adjacent basin. Our findings are consistent with en-masse lateral collapse with a volume ≥0.175 km3, resolving several ambiguities in previous reconstructions. Post-collapse eruptions produced an additional ~0.3 km3 of tephra, burying the scar and landslide deposit. The event provides a model for lateral collapse scenarios at other arc-volcanic islands showing that rapid island growth can lead to large-scale failure and that even faster rebuilding can obscure pre-existing collapse. © 2021, The Author(s).


Journal

Nature Communications

Publisher: Nature Research

Volume 12, Issue 1, Art No 2827, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105949617&doi=10.1038%2fs41467-021-22610-5&partnerID=40&md5=53e48a627be7e5caf186d9a5fc06d9bc

doi: 10.1038/s41467-021-22610-5

Issn: 20411723

Type: All Open Access, Gold, Green


References

McGuire, W.J., Lateral collapse and tsunamigenic potential of marine volcanoes (2006) Geol. Soc. Lond., 269, pp. 121-140; Masson, D.G., Slope failures on the flanks of the western Canary Islands (2002) Earth-Sci. Revs, 57, pp. 1-35; Masson, D.G., Submarine landslides: processes, triggers and hazard prediction (2006) Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 364, pp. 2009-2039. , COI: 1:STN:280:DC%2BD28vitlSitA%3D%3D; Day, S., Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea (2015) Mar. Petrol. Geol., 67, pp. 419-438; Walter, T.R., Complex hazard cascade culminating in the Anak Krakatau sector collapse (2019) Nat. Comms, 10, pp. 1-11. , COI: 1:CAS:528:DC%2BC1MXhvFSqsL7I; Paris, A., The December 22, 2018 Anak Krakatau, Indonesia, Landslide and Tsunami: preliminary Modeling Results (2019) Pure Appl. Geophys., 177, pp. 1-20; Ramalho, R.S., Hazard potential of volcanic flank collapses raised by new megatsunami evidence (2015) Sci. Adv., 1. , PID: 26601287; Paris, R., Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka (2017) Nat. Comms., 8, p. 15246. , COI: 1:CAS:528:DC%2BC2sXnslOjsr0%3D; Stehn, C.E., The geology and volcanism of the Krakatau group (1929) Guidebook for the 4Th Pacific Science Congress, pp. 1-55. , (University of Michigan, Ann Arbor, MI, USA; Stehn, C.E., A new undersea volcano (1930) Bull. Neth. East Indian Volcan. Surv., 27, pp. 146-149; Deplus, C., Inner structure of the Krakatau volcanic complex (Indonesia) from gravity and bathymetry data (1995) J. Volcan. Geotherm. Res, 64, pp. 1-2; Collot, J.Y., The giant Ruatoria debris avalanche on the Northern Hikurangi Margin, New Zealand: result of oblique seamount subduction (2001) J. Geophys. Res., 106, pp. 19271-19297; Gouhier, M., Paris, R., SO2 and tephra emissions during the December 22, 2018 Anak Krakatau eruption (2019) Volcanica, 2, pp. 91-103; Grilli, S., Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia (2019) Sci. Reps., 9, pp. 1-13. , COI: 1:CAS:528:DC%2BC1MXhs1Sitb3L; Borrero, J., Field Survey and Numerical Modelling of the December 22, 2018 Anak Krakatau Tsunami (2020) Pure Appl. Geophys., 177, pp. 2457-2475; Muhari, A., The December 2018 Anak Krakatau Volcano tsunami as inferred from post-tsunami field surveys and spectral analysis (2019) Pure Appl. Geophys., 176, pp. 5219-5233; Takabatake, T., Field survey and evacuation behavior during the 2018 Sunda Strait tsunami (2019) Coast. Eng. J., 61, pp. 423-443; Putra, P.S., Field survey of the 2018 Sulawesi tsunami deposits (2019) Pure Appl. Geophys., 176, pp. 2203-2213; Sunda Strait Tsunami (2019) Flash Update 6, , https://ahacentre.org/flash-update/flash-update-no-06-sunda-strait-tsunami-01-january-2019/; Ward, S.N., Day, S., Ritter Island Volcano – lateral collapse and tsunami of 1888 (2003) Geophys. J. Int., 154, pp. 891-902; Kawamata, K., (2005) Model of Tsunami Generation by Collapse of Volcanic Eruption, pp. 79-96. , (Springer; Sassa, K., A new A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster (2016) Landslides, 13, pp. 1405-1419; Paris, R., Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea) (2014) Nat. Hazards, 70, pp. 447-470; Ye, L., The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption (2020) Sci. Adv., 6, p. eaaz1377. , PID: 31998846; Syamsidik, I.R., The 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: tsunami and damage characteristics (2020) Nat. Hazards Earth Syst. Sci., 20, pp. 549-565; Heidarzadeh, M., Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia (2020) Ocean Eng., 195, p. 106733; Williams, R., Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami (2019) Geology, 47, pp. 973-976; Decker, R.W., Hadikusumo, D., Results of the 1960 Expedition to Krakatau (1961) J. Geophys. Res., 66, pp. 3497-3511; Zen, M.T., Growth and state of Anak Krakatau in September 1968 (1970) Bull. Volcan., 34, pp. 2015-2215; Seibold, I., Seibold, E., Charles Edgar Stehn: Der Ausbruch des Anak Krakatau im Mai 1933 (1996) Geol. Rundsch., 85, pp. 615-618; Hedervari, P., Catalog of submarine volcanoes and hydrological phenomena associated with volcanic events (1984) World Data Centre a for Solid Earth Geophysics, , Report SE-42 1 (National Geophysical Datacenter, USA; Novellino, A., Mapping recent shoreline changes spanning the lateral collapse of Anak Krakatau Volcano, Indonesia (2019) Appl. Sci., 10, p. 536; Grilli, S.T., (2019) Modeling of the Slide and Tsunami Generation from the 12/22/18 Lateral Collapse of Anak Krakatau Volcano (Sunda Straits, Indonesia): Comparison with Recent Field Surveys of Slide Deposits and Tsunami Impact, , AGUFM 2019, NH31A-05 (American Geophysical Union, USA; Mulia, I.E., Simulation of the 2018 tsunami due to the flank failure of Anak Krakatau volcano and implication for future observing systems (2020) Geophys. Res. Letts, 47, p. 14; Ren, Z., Numerical study of the triggering mechanism of the 2018 Anak Krakatau tsunami: eruption or collapsed landslide? (2020) Nat. Hazards: J. Int. Soc. Prev. Mitig. Nat. Hazards, 102, pp. 1-13; Pakoksung, K., Global optimization of a numerical two-layer model using observed data: a case study of the 2018 Sunda Strait tsunami (2020) Geosci. Lett., 7, pp. 1-20; Kongko, W., Karima, S., The Tsunami Model of Mount Anak Krakatau Landslide in 2018 and Its Future Potential Hazard to the Coastal Infrastructures in Sunda Strait (2020) J. Phys.: Conf. Ser., 1625, p. 1; Karstens, J., From gradual spreading to catastrophic collapse – Reconstruction of the 1888 Ritter Island volcanic sector collapse from high-resolution 3D seismic data (2019) Earth Planet. Sci. Letts, 517, pp. 1-13. , COI: 1:CAS:528:DC%2BC1MXns1OqtLY%3D; Watt, S.F., From catastrophic collapse to multi-phase deposition: flow transformation, seafloor interaction and triggered eruption following a volcanic-island landslide (2019) Earth Planet. Sci. Letts., 517, pp. 135-147. , COI: 1:CAS:528:DC%2BC1MXosVCnsbs%3D; Hunt, J.E., Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: a case study from Icod landslide on north Tenerife, Canary Islands (2011) Geochem. Geophys. Geosys., 12, p. 12; Urgeles, R., The most recent megaslides on the Canary Islands: the El Golfo debris avalanche and the Canary debris flow, west El Hierro Island (1997) J. Geophys. Res., 102, pp. 20305-20323; Masson, D.G., Catastrophic collapse of the volcanic island of El Hierro 15 ka ago and the history of landslides in the Canary Islands (1996) Geology, 24, pp. 231-234; Moore, J.G., Volcano growth and evolution of the island of Hawaii (1992) Geol. Soc. Am. Bull., 104, pp. 1471-1484; Moore, J.G., Prodigious submarine landslides on the Hawaiian Ridge (1989) J. Geophys. Res. Solid Earth, 94, pp. 17465-17484; Zengaffinen, T., Modelling 2018 Anak Krakatoa flank collapse and tsunami–effect of landslide failure mechanism and dynamics on tsunami generation (2020) Pure Appl. Geophys., 177, pp. 2493-2516; Omira, R., Ramalho, I., Evidence-Calibrated Numerical Model of December 22, 2018, Anak Krakatau Flank Collapse and Tsunami (2020) Pure Appl. Geophys., 177, pp. 3059-3071; Watt, S.F.L., Widespread and progressive seafloor-sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles (2012) Mar. Geol., 323-325, pp. 69-94; Si, P., Shi, H., Yu, X., Development of a mathematical model for submarine granular flows (2018) Phys. Fluids, 30, p. 083302. , COI: 1:CAS:528:DC%2BC1cXhsVOntbrI; Savage, S.B., Hutter, K., The motion of a finite mass of granular material down a rough incline (1989) J. Fluid Mech., 199, pp. 177-215; Savage, S.B., Modeling gravitational collapse of rectangular granular piles in air and water (2014) Mech. Res. Comms, 56, pp. 1-10; Giachetti, T., Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia (2012) Geol. Soc. Lond. Spec. Pub, 361, pp. 79-90; Voight, B., Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980 (1983) Geotechnique, 33, pp. 243-273; Wadge, G., Saunders, S., Itikarai, I., Pulsatory andesite lava flow at Bagana Volcano (2012) Geochem. Geophys. Geosys., 13, p. 11; Arnold, D.W., Lava flow morphology at an erupting andesitic stratovolcano: a satellite perspective on El Reventador, Ecuador (2019) J. Volcanol. Geotherm. Res., 372, pp. 34-47. , COI: 1:CAS:528:DC%2BC1MXitlOisro%3D; Schumann, K., P and S wave velocity measurements of water‐rich sediments from the Nankai Trough, Japan (2014) J. Geophys. Res. Solid Earth, 119, pp. 787-805; Kim, H.-S., P-wave velocity estimation of unconsolidated sediments containing CO2 (2015) Int. J. Greenh. Gas. Control, 33, pp. 18-25. , COI: 1:CAS:528:DC%2BC2cXitFWhs7bJ; Neumann van Padang, M., History of the volcanology in the former Netherlands East Indies (1983) Scr. Geol., 71, pp. 1-76

Indexed by Scopus

Leave a Comment