Spatial and temporal analysis of hospitalized dengue patients in Bandung: demographics and risk

Faridah L., Mindra I.G.N., Putra R.E., Fauziah N., Agustian D., Natalia Y.A., Watanabe K.

Parasitology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Foreign Visiting Researcher at Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan; Department of Statistics, Universitas Padjadjaran, Bandung, Indonesia; School of Life Science and Technology, Institut Teknologi Bandung, Jl. Ganeca 10, Bandung, West Java 40132, Indonesia; Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan


Background: Bandung, the fourth largest city in Indonesia and capital of West Java province, has been considered a major endemic area of dengue, and studies show that the incidence in this city could increase and spread rapidly. At the same time, estimation of incidence could be inaccurate due to a lack of reliable surveillance systems. To provide strategic information for the dengue control program in the face of limited capacity, this study used spatial pattern analysis of a possible outbreak of dengue cases, through the Geographic Information System (GIS). To further enhance the information needed for effective policymaking, we also analyzed the demographic pattern of dengue cases. Methods: Monthly reports of dengue cases from January 2014 to December 2016 from 16 hospitals in Bandung were collected as the database, which consisted of address, sex, age, and code to anonymize the patients. The address was then transformed into geocoding and used to estimate the relative risk of a particular area’s developing a cluster of dengue cases. We used the kernel density estimation method to analyze the dynamics of change of dengue cases. Results: The model showed that the spatial cluster of the relative risk of dengue incidence was relatively unchanged for 3 years. Dengue high-risk areas predominated in the southern and southeastern parts of Bandung, while low-risk areas were found mostly in its western and northeastern regions. The kernel density estimation showed strong cluster groups of dengue cases in the city. Conclusions: This study demonstrated a strong pattern of reported cases related to specific demographic groups (males and children). Furthermore, spatial analysis using GIS also visualized the dynamic development of the aggregation of disease incidence (hotspots) for dengue cases in Bandung. These data may provide strategic information for the planning and design of dengue control programs. © 2021, The Author(s).

Bandung; Dengue infection; Spatial pattern


Tropical Medicine and Health

Publisher: BioMed Central Ltd

Volume 49, Issue 1, Art No 44, Page – , Page Count

Journal Link:

doi: 10.1186/s41182-021-00329-9

Issn: 13488945

Type: All Open Access, Gold, Green


Ayukekbong, J.A., Oyero, O.G., Nnukwu, S.E., Mesumbe, H.N., Fobisong, C.N., Value of routine dengue diagnosis in endemic countries (2017) World J Virol, 6 (1), pp. 9-16; (2012) Global strategy for dengue prevention and control 2012–2020, ,, Accessed 26 May 2020; Maula, A.W., Fuad, A., Utarini, A., Ten-years trend of dengue research in Indonesia and South-east Asian countries: a bibliometric analysis (2018) Global Health Action, 11 (1), p. 1504398; Hasan, S., Jamdar, S.F., Alalowi, M., Al Beaiji, S.M., Dengue virus: A global human threat: Review of literature (2016) J Int Soc Prev Community Dent, 6 (1), pp. 1-6; (2014) Bandung Health Profile 2013, , Bandung, Ministry of Health; Chao, D.Y., Lin, T.H., Hwang, K.P., Huang, J.H., Liu, C.C., King, C.C., 1998 dengue hemorrhagic fever epidemic in Taiwan (2004) Emerging Infect Dis, 10 (3), pp. 552-554; Fuentes-Vallejo, M., Space and space-time distribution of dengue in a hyper-endemic urban space: the case of Girardot, Colombia (2017) BMC Infect Dis, 17 (1), p. 512; Kao, J.H., Chen, C.D., Tiger Li, Z.R., Chan, T.C., Tung, T.H., Chu, Y.H., Cheng, H.Y., King, C.C., The critical role of early dengue surveillance and limitations of clinical reporting – implications for non-endemic countries (2016) PLOS ONE, 11 (8); Faridah, L., Rinawan, F., Fauziah, N., Mayasari, W., Dwiartama, A., Watanabe, K., Evaluation of Health Information System (his) in the surveillance of Dengue in Indonesia: Lessons from case in Bandung, West Java (2020) Int J Environ Res Public Health, 17 (5), p. 1795; Arsalan, Q., Qadar, L.T., Ochani, R.K., Tahir, F., Majid, Z., Collateral presentation of Malaria and Dengue viral Hemorrhagic fever: a rare case (2019) Cureus, 11 (2). , PID: 31016078; Kakarla, S.G., Caminade, C., Mutheneni, S.R., Morse, A.P., Upadhyayula, S.M., Kadiri, M.R., Kumaraswamy, S., Lag effect of climatic variables on dengue burden in India (2019) Epidemiol Infect, 147, p. e170.23; Pan, C.Y., Liu, W.L., Su, M.P., Chang, T.P., Ho, H.P., Shu, P.Y., Huang, J.J., Chen, C.H., Epidemiological analysis of the Kaohsiung city strategy for dengue fever quarantine and epidemic prevention (2020) BMC Infect Dis, 20 (1), p. 347; Vicente, C.R., Herbinger, K.H., Junior, C.C., Romano, C.M., Cabidelle, A.S.A., Froschl, G., Determination of clusters and factors associated with dengue dispersion during the first epidemic related to Dengue virus serotype 4 in Vitória, Brazil (2017) PLoS ONE, 12 (4); Phung, D., Huang, C., Rutherford, S., Chu, C., Wang, X., Nguyen, W., Nguyen, N.H., Nguyen, T.H., Temporal and spatial patterns of diarrhoea in the Mekong Delta area, Vietnam (2015) Epidemiol Infect, 143 (16), pp. 3488-3497; Dewan, A., Abdullah, A.Y., Shogib, M.R., Karim, R., Rahman, M.M., Exploring spatial and temporal patterns of visceral leishmaniasis in endemic areas of Bangladesh (2017) Trop Med Health, 45, p. 29; Corner, R.J., Dewan, A.M., Hashizume, M., Modelling typhoid risk in Dhaka Metropolitan Area of Bangladesh: the role of socio-economic and environmental factors (2013) Int J Health Geograph, 12 (1), p. 13; Wangdi, K., Canavati, S.E., Ngo, T.D., Nguyen, T.M., Tran, L.K., Kelly, G.C., Martin, N.J., Clements, A.C.A., Spatial and temporal patterns of malaria in Phu Yen Province, Vietnam, from 2005 to 2016 (2020) Am J Trop Med Hygiene, 103 (4), pp. 1540-1548; Majid, N.A., Nazi, N.M., Mohamed, A.F., Distribution and spatial pattern analysis on dengue cases in Seremban District, Negeri Sembilan, Malaysia (2019) Sustainability, 11 (13), p. 3572; Mutheneni, S.R., Mopuri, R., Naish, S., Gunti, D., Upadhyayul. Spatial distribution and cluster analysis of dengue using self organizing maps in Andhra Pradesh, India, 2011–2013 (2018) Parasit Epidemiol Contr, 3 (1), pp. 52-61; Pessanha, J.E.M., Caiaffa, W.T., Almeida, M.C.M., Brandao, S.T., Proietti, F.A., Diffusion pattern and hotspot detection of dengue in Belo Horizonte, Minas Gerais, Brazil (2012) J Trop Med, 2012, p. 760951; Wangdi, K., Clements, A.C.A., Du, T., Nery, S.V., Spatial and temporal patterns of dengue infections in Timor-Leste, 2005–2013 (2018) Parasites Vectors, 11 (1), p. 9; Vicenti-Gonzalez, M.F., Grillet, M.E., Velasco-Salas, Z.I., Lizarazo, E.F., Amarista, M.A., Sierra, G.M., Comach, G., Tami, A., Spatial Analysis of Dengue Seroprevalence and Modeling of Transmission Risk Factors in a Dengue Hyperendemic City of Venezuela (2017) PLoS Neglect Trop Dis, 11 (1); Sangkaew, S., Tan, L.K., Ng, L.C., Ferguson, N.M., Dorigatti, I., Using cluster analysis to reconstruct dengue exposure patterns from cross-sectional serological studies in Singapore (2020) Parasites Vectors, 13 (1), p. 32; Tenny, S., Hoffman, M.R., Prevalence (2020) StatPearls, ,, StatPearls Publishing, Accessed 25 May 2020; Martínez-Bello, D.A., López-Quílez, A., Torres, P.A., Relative risk estimation of dengue disease at small spatial scale (2017) Int J Health Geogr, 16 (1), p. 31; Jacquez, G., Greiling, D., Kaufmann, A., Design and implementation of a space-time intelligence system for disease surveillance (2005) J Geographic Syst, 7 (1), pp. 7-23; Rogerson, P., Yamada, I., (2008) Statistical detection and surveillance of geographic clusters, , CRC Press, Boca Raton, FL; Kwan, M.-P., The uncertain geographic context problem (2012) Ann Assoc Am Geograph, 102 (5), pp. 958-968; Delmelle, E., Dony, C., Casas, I., Jia, M., Tang, W., Vizualizing the impact of space-time uncertainties on dengue fever patterns (2014) Int J Geographic Inform Sci, 28 (5), pp. 1107-1127; Burra, T., Jerrett, M., Burnett, R., Anderson, M., Conceptual and practical issues in the detection of local disease clusters: a study of mortality in Hamilton, Ontario (2002) Can Geograph, 46 (2), pp. 160-171; Zimmerman, D., Li, J., Fang, X., Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering (2010) Stat Med, 29 (9), pp. 1025-1036; Zimmerman, D.L., Li, J., The effects of local street network characteristics on the positional accuracy of automated geocoding for geographic health studies (2010) Int J Health Geograph, 9 (1), p. 10; Harada, Y., Shimada, T., Examining the impact of the precision of address geocoding on estimated density of crime locations (2006) Comput Geosci, 32 (8), pp. 1096-1107; Bailey, T., Gatrell, Q., (1995) Interactive spatial data analysis, , Pearson Education Limited, Harlow; Lemke, D., Mattauch, V., Heidinger, O., Pebesma, E., Hense, H.-W., Comparing adaptive and fixed bandwidth-based kernel density estimates in spatial cancer epidemiology (2015) Int J Health Geographic, 14, p. 15; Silverman, B.W., (1986) Density estimation for statistics and data analysis, , Chapman & Hall, New York; Amaral, S., Gavlak, A.A., Escada, M.I.S., Monteiro, A.M.V., Using remote sensing and census tract data to improve representation of population spatial distribution: case studies in the Brazilian Amazon (2012) Popul Environ, 34 (1), pp. 142-170; Lemke, D., Mattauch, V., Heidinger, O., Pebesma, E., Hense, H.W., Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study (2013) Int J Health Geogr, 12 (1), p. 54; Delmelle, E., Delmelle, E.C., Casas, I., Barto, T., H.E.L.P: a GIS-based health exploratory analysis tool for practitioners (2011) Appl Spatial Anal Policy, 4 (2), pp. 113-137; (2017) Bidang Data dan Statistik: Open Data Kota Bandung, ,, Accessed 17 Nov 2017; (2011) Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever, ,, Accessed 27 May 2020; Bithell, J., An application of density estimation to geographical epidemiology (1990) Stat Med, 9 (6), pp. 691-701; Hazelton, M.L., Testing for changes in spatial relative risk (2017) Stat Med, 36 (17), pp. 2735-2749; Wu, T.J., Chen, C.F., Chen, H.Y., A variable bandwidth selector in multivariate kernel density estimation (2007) Stat Prob Lett, 77 (4), pp. 462-467; Jaya, I.G.N.M., Folmer, H., Identifying spatiotemporal clusters by means of agglomerative hierarchical clustering and bayesian regression analysis with spatiotemporally varying coefficients: Methodology and application to dengue disease in Bandung, Indonesia (2020) Geographic Anal, ,; Kalinic, M., Krisp, J.M., (2018) Kernel Density Estimation (KDE) vs. Hot-Spot Analysis – Detecting Criminal Hot Spots in the City of San Francisco, , Conference proceeding, AGILE 2018, Lund; Astuti, E.P., Dhewantara, P.W., Prasetyowati, H., Ipa, M., Herawati, C., Hendrayana, K., Paediatric dengue infection in Cirebon, Indonesia: a temporal and spatial analysis of notified dengue incidence to inform surveillance (2019) Parasites Vectors, 12, p. 186; Corwin, A.L., Larasati, R.P., Bangs, M.J., Wuryadi, S., Arjoso, S., Sukri, N., Listyaningsih, E., Porter, K.R., Epidemic dengue transmission in southern Sumatra, Indonesia (2001) Trans R Soc Trop Med Hyg, 95 (3), pp. 257-265; Dhewantara, P.W., Marina, R., Puspita, T., Ariati, Y., Purwanto, E., Hananto, M., Hu, W., Soares Magalhaes, R.J., Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study (2019) Travel Med Infect Dis, 27, p. 101437; Tosepu, R., Tantrakarnapa, K., Nakhapakorn, K., Worakhunpiset, S., Climate variability and dengue hemorrhagic fever in Southeast Sulawesi Province, Indonesia (2018) Environ Sci Pollut Res, 25 (15), pp. 14944-14952; Polwiang, S., The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017) (2020) BMC Infect Dis, 20 (1), p. 208; Choi, Y., Tang, C.S., McIver, L., Hashizume, M., Chan, V., Abeyasinghe, R.R., Iddings, S., Huy, R., Effects of weather factors on dengue fever incidence and implications for interventions in Cambodia (2016) BMC Public Health, 16 (1), p. 241; Chien, L.C., Yu, H.L., Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence (2014) Environ Int, 73, pp. 46-56; Anker, M., Arima, Y., Male-female differences in the number of reported incident dengue fever cases in six Asian countries (2011) Western Pac Surveill Response J, 2 (2), pp. 17-23; Antony, J., Celine, T.M., A descriptive study on dengue fever reported in a Medical College Hospital (2014) Sahel Med J, 17 (3), pp. 83-86; Eong, O.E., Changing pattern of dengue transmission in Singapore (2001) Dengue Bullet, 25, pp. 40-44; (2017) Pembangunan Manusia Berbasis Gender 2017, , KPPPA, Jakarta; Chang, C.J., Chen, C.S., Tien, C.J., Lu, M.R., Epidemiological, clinical and climatic characteristics of dengue fever in Kaohsiung City, Taiwan with implication for prevention and control (2018) PLoS One, 13 (1); Kosasih, H., Alisjahbana, B., Nurhayati, M.Q., Rudiman, I., Widjaja, S., Antonjaya, U., The epidemiology, virology and clinical findings of dengue virus infections in a cohort of indonesian adults in western java (2016) Plos Negl Trop Dis, ,; Sasmono, R.T., Taurel, A.F., Prayitno, A., Sitompul, H., Yohan, B., Hayati, R.F., Bouckenooghe, A., Nealon, J., Dengue virus serotype distribution based on serological evidence in pediatric urban population in Indonesia (2018) PLoS Negl Tropical Diseases., 12 (6); Rodriguez-Barraquer, I., Cordeiro, M.T., Braga, C., de Souza, W.V., Marques, E.T., Cummings, D.A., From re-emergence to hyperendemicity: the natural history of the dengue epidemic in Brazil (2011) PLoS Negl Trop Dis, 5 (1); Paramita, B., The land-use of Bandung, its density, overcrowded area and public facility toward a compact city (2016) IOP Conference Series: Materials Science and Engineering; Aziz, S., Ngui, R., Lim, Y.A., Sholehah, I., Nur Farhana, J., Azizan, A.S., Wan Yusoff, W.S., Spatial pattern of 2009 dengue distribution in Kuala Lumpur using GIS application (2012) Trop Biomed, 29 (1), pp. 113-120. , COI: 1:STN:280:DC%2BC38rovFymtw%3D%3D, PID: 22543611; Dickin, S.K., Schuster-wallace, C.J., Elliott, S.J., Developing a vulnerability mapping methodology: applying the water-associated disease index to dengue in Malaysia (2013) PLoS One, 8 (5); Gubler, D.J., Population growth, urbanization, automobiles and airplanes: the dengue connection (1998) New and Resurgent Infections: Prediction, Detection and Management of Tomorrow’s Epidemics, pp. 117-129. , Greenwood B, Cock K, (eds), London School of Hygiene and Tropical Medicine, London; Gubler, D.J., Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century (2011) Trop Med Health, 39 (4SUPPLEMENT), pp. S3-S11; Messina, J.P., Brady, O.J., Golding, N., Kraemer, M.U.G., Wint, G.R.W., Ray, S.E., Pigott, D.M., Hay, S.I., The current and future global distribution and population risk of dengue (2019) Nat Microbiol, 4 (9), pp. 1508-1515; Sarfraz, M.S., Tripathi, N.K., TIpdecho, T., Thongbu, T., Kerdthong, P., Souris, M., Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping (2012) BMC Public Health, 12 (1), p. 853; Warlina, L., Guntara, R., Agricultural land use change into tourism area in Lembang Sub-district, West Bandung Regency, West Java Province, Indonesia (2019) IOP Conference Series: Materials Science and Engineering; Phanitchat, T., Zhao, B., Haque, U., Pientong, C., Ekalaksananan, T., Aromseree, A., Thaewnongiew, K., Overgaard, H.J., Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006-2016 (2019) BMC Infect Dis, 19 (1), p. 743; Churakov, M., Villabona-Arenas, C.J., Kraemer, M.U.G., Salje, H., Cauchemez, S., Spatio-temporal dynamics of dengue in Brazil: Seasonal travelling waves and determinants of regional synchrony (2019) PLOS Negl Trop Dis, 13 (4); Guzetta, G., Marques-Toledo, C.A., Rosa, R., Teixeira, M., Merler, S., Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction (2018) Nat Commun, 9 (1), p. 2837; Eder, M., Cortes, F., Filha, N.T.S., Franca, G.V.A., Degroote, S., Braga, C., Ridde, V., Martelli, C.M.T., Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection (2018) Infect Dis Poverty, 7 (1), p. 90; Alex, C., Djatnika, S., Ridad, A., Marcvan, S., Robert, C., Hospital based clinical surveillance for dengue haemorrhagic fever in Bandung, Indonesia 1994–1995 (2001) Acta Trop, 80 (2), pp. 111-115; Tapia-Conyer, R., Méndez-Galván, J., Burciaga-Zúñiga, P., Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico (2012) Paediatr Int Child Health, 32 (s1), pp. 10-13

Indexed by Scopus

Leave a Comment