Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron

Jägers P., Wagner L., Schütz R., Mucke M., Senen B., Limmon G.V., Herlitze S., Hellinger J.

Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44780, Germany; Fisheries College Hatta-Syahrir, Banda Naira, Malukuh Tengah, Indonesia; Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Pattimura University, Ambon, Indonesia; Maritime and Marine Science Center for Excellence, Pattimura University, Ambon, Indonesia


Abstract

The schooling flashlight fish Anomalops katoptron can be found at dark nights at the water surface in the Indo-Pacific. Schools are characterized by bioluminescent blink patterns of sub-ocular light organs densely-packed with bioluminescent, symbiotic bacteria. Here we analyzed how blink patterns of A. katoptron are used in social interactions. We demonstrate that isolated specimen of A. katoptron showed a high motivation to align with fixed or moving artificial light organs in an experimental tank. This intraspecific recognition of A. katoptron is mediated by blinking light and not the body shape. In addition, A. katoptron adjusts its blinking frequencies according to the light intensities. LED pulse frequencies determine the swimming speed and the blink frequency response of A. katoptron, which is modified by light organ occlusion and not exposure. In the natural environment A. katoptron is changing its blink frequencies and nearest neighbor distance in a context specific manner. Blink frequencies are also modified by changes in the occlusion time and are increased from day to night and during avoidance behavior, while group cohesion is higher with increasing blink frequencies. Our results suggest that specific blink patterns in schooling flashlight fish A. katoptron define nearest neighbor distance and determine intraspecific communication. © 2021, The Author(s).


Journal

Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 6431, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102883944&doi=10.1038%2fs41598-021-85770-w&partnerID=40&md5=b81c9dbfa46ad0a22bf3f2863361b764

doi: 10.1038/s41598-021-85770-w

Issn: 20452322

Type: All Open Access, Gold, Green


References

Haddock, S.H.D., Moline, M.A., Case, J.F., Bioluminescence in the sea (2010) Annu. Rev. Mar. Sci., 2, pp. 443-493; Bessho-Uehara, M., Kleptoprotein bioluminescence: parapriacanthus fish obtain luciferase from ostracod prey (2020) Sci. Adv., 6, p. eaax4942; Davis, M.P., Sparks, J.S., Smith, W.L., Repeated and widespread evolution of bioluminescence in marine fishes (2016) PLoS ONE, 11; Claes, J.M., Mallefet, J., Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae) (2008) J. Fish Biol., 73, pp. 1337-1350; Harper, R.D., Case, J.F., Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus (1999) Mar. Biol., 134, pp. 529-540; Herring, P.J., Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea (2007) J. Mar. Biol. Ass., 87, pp. 829-842; Widder, E.A., Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity (2010) Science (New York, NY), 328, pp. 704-708; Hellinger, J., The flashlight fish anomalops katoptron uses bioluminescent light to detect prey in the dark (2017) PLoS ONE, 12; Golani, D., Fricke, R., Appelbaum-Golani, B., Review of the genus Photoblepharon (Actinopterygii: Beryciformes: Anomalopidae) (2019) Acta Ichthyol. Piscat., 49, pp. 33-41; Ho, H.-C., Johnson, G.D., Protoblepharon mccoskeri, a new flashlight fish from eastern Taiwan (Teleostei: Anomalopidae) (2012) Zootaxa; Morin, J.G., Light for all reasons: versatility in the behavioral repertoire of the flashlight fish (1975) Science, 190, pp. 74-76; Hellinger, J., Analysis of the territorial aggressive behavior of the bioluminescent flashlight fish photoblepharon steinitzi in the Red Sea (2020) Front. Mar. Sci., 7, p. 431; Gruber, D.F., Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish (2019) PLoS ONE, 14; Hendry, T.A., de Wet, J.R., Dunlap, P.V., Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate (2014) Environ. Microbiol., 16, pp. 2611-2622; Hendry, T.A., de Wet, J.R., Dougan, K.E., Dunlap, P.V., Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish (2016) Genome Biol. Evol., 8, pp. 2203-2213; Haneda, Y., Tsuji, F.I., Light production in the luminous fishes Photoblepharon and Anomalops from the Banda Islands (1971) Science (New York, NY), 173, pp. 143-145; Bassot, J.-M., Bioluminescence in Progress, pp. 557-610. , edited by F. H. Johnson & Y. Haneda (Princeton University Press1966), pp; Watson, M., Thurston, E.L., Nicol, J.A.C., Reflectors in the Light Organ of Anomalops (Anomalopidae, Teleostei) (1978) Proc. R. Soc. Lond. Ser. B Biol. Sci., 202, pp. 339-351. , COI: 1:CAS:528:DyaE1cXlsVelsrg%3D; Mark, M.D., Visual tuning in the flashlight fish Anomalops katoptron to detect blue, bioluminescent light (2018) PLoS ONE, 13; Howland, H.C., Murphy, C.J., McCosker, J.E., Detection of eyeshine by flashlight fishes of the family anomalopidae (1992) Vis. Res., 32, pp. 765-769; McCosker, J.E., Rosenblatt, R.H., Notes on the biology, taxonomy, and distribution of flashlight fishes (Beryciformes: Anomalopidae) (1987) Jpn. J. Ich., 34, pp. 157-164; Parrish, J.K., Viscido, S.V., Grünbaum, D., Self-organized fish schools: an examination of emergent properties (2002) Biol. Bull., 202, pp. 296-305; Pitcher, T.J., (1993) Behaviour of Teleost Fishes, , (ed), Chapman & Hall; Helfman, G.S., Collette, B.B., Facey, D.E., Bowen, B.W., (2009) The Diversity of Fishes. Biology, Evolution, and Ecology, , 2, Wiley-Blackwell, Oxford; McLean, S., Persson, A., Norin, T., Killen, S.S., Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools (2018) Curr. Biol., 28, pp. 1144-1149; Pitcher, T.J., Magurran, A.E., Winfield, I.J., Fish in larger shoals find food faster (1982) Behav. Ecol. Sociobiol., 10, pp. 149-151; Ioannou, C.C., Guttal, V., Couzin, I.D., Predatory fish select for coordinated collective motion in virtual prey (2012) Science (New York, NY), 337, pp. 1212-1215; Turner, G.F., Pitcher, T.J., Attack abatement: a model for group protection by combined avoidance and dilution (1986) Am. Nat., 128, pp. 228-240; Landeau, L., Terborgh, J., Oddity and the ‘confusion effect’ in predation (1986) Anim. Behav., 34, pp. 1372-1380; Kowalko, J.E., Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms (2013) Curr. Biol., 23, pp. 1874-1883; Partridge, B.L., Pitcher, T.J., The sensory basis of fish schools: Relative roles of lateral line and vision (1980) J. Comp. Physiol., 135, pp. 315-325; Herbert-Read, J.E., How predation shapes the social interaction rules of shoaling fish (2017) Proc. Biol. Sci.; Bierbach, D., Using a robotic fish to investigate individual differences in social responsiveness in the guppy (2018) R. Soc. Open Sci., 5, p. 181026; Berdahl, A., Torney, C.J., Ioannou, C.C., Faria, J.J., Couzin, I.D., Emergent sensing of complex environments by mobile animal groups (2013) Science (New York, NY), 339, pp. 574-576; Sosna, M.M.G., Individual and collective encoding of risk in animal groups (2019) Proc. Natl. Acad. Sci. USA, 116, pp. 20556-20561; Kunz, H., Hemelrijk, C.K., Artificial fish schools: collective effects of school size, body size, and body form (2003) Artif. Life, 9, pp. 237-253; Worm, M., Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 6852-6857; Marras, S., Batty, R.S., Domenici, P., Information transfer and antipredator maneuvers in schooling herring (2012) Adapt. Behav., 20, pp. 44-56; Cohen, A.C., Morin, J.G., It’s all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of caribbean ostracodes (2010) J. Crustacean Biol., 30, pp. 56-67; Rivers, T.J., Morin, J.G., Complex sexual courtship displays by luminescent male marine ostracods (2008) J. Exp. Biol., 211, pp. 2252-2262; Widder, E.A., Latz, M.I., Herring, P.J., Case, J.F., Far red bioluminescence from two deep-sea fishes (1984) Science (New York, NY), 225, pp. 512-514; Mensinger, A.F., Case, J.F., Luminescent properties of deep sea fish (1990) J. Exp. Mar. Biol. Ecol., 144, pp. 1-15; Sasaki, A., Field evidence for bioluminescent signaling in the Pony Fish, Leiognathus elongatus (2003) Environ. Biol. Fishes, 66, pp. 307-311; McFall-Ngai, M.J., Dunlap, P.V., Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence (1983) Mar. Biol., 73, pp. 227-237; Johnson, G.D., Rosenblatt, R.H., Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group (1988) Zool. J. Linnean Soc., 94, pp. 65-96; Herbert-Read, J.E., Inferring the rules of interaction of shoaling fish (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 18726-18731; Siebeck, U.E., Parker, A.N., Sprenger, D., Mäthger, L.M., Wallis, G., A species of reef fish that uses ultraviolet patterns for covert face recognition (2010) Curr. Biol. CB, 20, pp. 407-410; Larsch, J., Baier, H., Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation (2018) Curr. Biol., 28, pp. 3523-3532.e4; Kasumyan, A.O., Acoustic signaling in fish (2009) J. Ichthyol., 49, pp. 963-1020; Santon, M., Redirection of ambient light improves predator detection in a diurnal fish (2020) Proc. Biol. Sci., 287, p. 20192292; de Busserolles, F., Fogg, L., Cortesi, F., Marshall, J., The exceptional diversity of visual adaptations in deep-sea teleost fishes (2020) Semin. Cell Dev. Biol.; Bainbridge, R., The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat (1958) J. Exp. Biol., 35, p. 109; Videler, J.J., Wardle, C.S., Fish swimming stride by stride: speed limits and endurance (1991) Rev. Fish. Biol. Fish., 1, pp. 23-40; Ware, D.M., Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size (1978) J. Fish. Res. Bd. Can., 35, pp. 220-228; Meyer-Rochow, V.B., Loss of bioluminescence inAnomalops katoptron due to starvation (1976) Experientia, 32, pp. 1175-1176; Barber, I., Downey, L.C., Braithwaite, V.A., Parasitism, oddity and the mechanism of shoal choice (1998) J. Fish Biol., 53, pp. 1365-1368; Ward, A.J.W., Duff, A.J., Krause, J., Barber, I., Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala (2005) Environ. Biol. Fish., 72, pp. 155-160; Theodorakis, C.W., Size segregation and the effects of oddity on predation risk in minnow schools (1989) Anim. Behav., 38, pp. 496-502; Steche, O., Die Leuchtorgane von Anomalops katoptron und Photoblepharon palpebratus, zwei Oberflächenfischen aus dem malayischen Archipel: Ein Beitrag zur Anatomie und Physiologie der Leuchtorgane der Fische (1909) Z Wiss Zool; Parrish, J.K., Edelstein-Keshet, L., Complexity, pattern, and evolutionary trade-offs in animal aggregation (1999) Science (New York, NY), 284, pp. 99-101; Woodland, D.J., Cabanban, A.S., Taylor, V.M., Taylor, R.J., A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae: Perciformes) (2002) Mar. Freshwater Res., 53, p. 159

Indexed by Scopus

Leave a Comment