Polyphosphate (PolyP) for alveolar cleft repair: study protocol for a pilot randomized controlled trial

Alkaabi S.A., Natsir Kalla D.S., Alsabri G.A., Fauzi A., Tajrin A., Müller W.E.G., Schröder H.C., Wang X.G., Forouzanfar T., Helder M.N., Ruslin M.

Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Department of Oral and Maxillofacial Surgery, Al Kuwait Hospital, Ministry of Health, Dubai, United Arab Emirates; Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, 90425, Indonesia; Institut für Physiologische Chemie, Angewandte Molekularbiologie, Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Mainz, Germany; NanotecMARIN GmbH, Mainz, Germany


Objective: Bone grafting is an important surgical procedure to restore missing bone in patients with alveolar cleft lip/palate, aiming to stabilize either sides of the maxillary segments by inducing new bone formation, and in bilateral cleft cases also to stabilize the pre-maxilla. Polyphosphate (PolyP), a physiological polymer composed of orthophosphate units linked together with high-energy phosphate bonds, is a naturally existing compound in platelets which, when complexed with calcium as Ca-polyP microparticles (Ca-polyP MPs), was proven to have osteoinductive properties in preclinical studies. Aim: To evaluate the feasibility, safety, and osteoinductivity of Ca-polyP MPs as a bone-inducing graft material in humans. Methods: This prospective non-blinded first-in-man clinical pilot study shall consist of 8 alveolar cleft patients of 13 years or older to evaluate the feasibility and safety of Ca-PolyP MPs as a bone-inducing graft material. Patients will receive Ca-polyP graft material only or Ca-polyP in combination with biphasic calcium phosphate (BCP) as a bone substitute carrier. During the trial, the participants will be investigated closely for safety parameters using radiographic imaging, regular blood tests, and physical examinations. After 6 months, a hollow drill will be used to prepare the implantation site to obtain a biopsy. The radiographic imaging will be used for clinical evaluation; the biopsy will be processed for histological/histomorphometric evaluation of bone formation. Discussion: This is the first-in-man study evaluating the safety and feasibility of the polyP as well as the potential regenerative capacity of polyP using an alveolar cleft model. Trial registration: Indonesian Trial Registry INA-EW74C1N. Registered on 12 June 2020 © 2021, The Author(s).

Alveolar bone grafting; Bone regeneration; Polyphosphate; Regenerative medicine



Publisher: BioMed Central Ltd

Volume 22, Issue 1, Art No 393, Page – , Page Count

Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107848904&doi=10.1186%2fs13063-021-05325-2&partnerID=40&md5=7519f24f4ac45c113b9f826601a75f2e

doi: 10.1186/s13063-021-05325-2

Issn: 17456215

Type: All Open Access, Gold, Green


Lexer, E., Die Verwendung der freien knochenplastik nebst versucher uber gelenkversteinfung und gelenktransplantation (1908) Arch Klin Chir, 86, pp. 939-943; Von Eiselsberg, F., Zür technik der uranoplastik (1901) Arch Klin Chir, 64, pp. 509-529; Al-Sebaei, M.O., Papageorge, M.B., Woo, T., Technique for in-office cranial bone harvesting (2004) J Oral Maxillofac Surg, 62 (2), pp. 120-122; Enemark, H., Jensen, J., Bosch, C., Mandibular bone graft material for reconstruction of alveolar cleft defects: long-term results (2001) The Cleft Palate – Craniofac J, 38 (2), pp. 155-163; Hughes, C.W., Revington, P.J., The proximal tibia donor site in cleft alveolar bone grafting: experience of 75 consecutive cases (2002) J Craniomaxillofac Surg, 30 (1), pp. 12-17; Tomar, K., Sahoo, N.K., Evaluation of graft uptake from the iliac crest in secondary alveolar bone grafting: Bergland’s criteria revisited (2018) J Oral Biol Craniofac Res, 8 (3), pp. 171-176; Witsenburg, B., Peter, H., Freihofer, M., Autogenous rib graft for reconstruction of alveolar bone defects in cleft patients: long-term follow-up results (1990) J Craniomaxillofac Surg, 18 (2), pp. 55-62; Ilankoan, V., Stronczek, M., Telfer, M., Peterson, L.J., Stassen, L.F., A prospective study of trephined bone grafts of the tibial shaft and iliac crest (1998) Br J Oral Maxillofac Surg, 36 (6), pp. 434-439; De Ruiter, A., Dik, E., van Es, R., van der Bilt, A., Janssen, N., Micro-structured calcium phosphate ceramic for donor site repair after harvesting chin bone for grafting alveolar clefts in children (2014) J Craniomaxillofac Surg, 42 (5), pp. 460-468; Lazarou, S.A., Contodimos, G.B., Gkegkes, I.D., Correction of alveolar cleft with calcium-based bone substitutes (2011) J Craniofac Surg, 22 (3), pp. 854-857; Müller, W.E.G., Achermann, M., Wang, S., Neufurth, M., Muñoz-Espi, R., Inorganic polyphosphate induces accelerated tube formation of HUVEC endothelial cells (2013) Cell. Mol. Life Sci, 75, pp. 21-32; Müller, W.E.G., Neufurth, M., Wang, S., Ackermann, M., Muñoz-Espí, R., Amorphous, smart, and bioinspired polyphosphate nano/microparticles: a biomaterial for regeneration and repair of osteo-articular impairments in-situ (2018) Int J Mol Sci, 19 (2), p. 427; Ruiz, F.A., Lea, C.R., Oldfield, E., Docampo, R., Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes (2004) J Biol Chem, 279 (43), pp. 44250-44257; Wang, X.H., Schröder, H.C., Müller, W.E.G., Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering (2018) J Mat Chem B, 6 (16), pp. 2385-2412; Müller, W.E.G., Wang, X.H., Diehl-Seifert, B., Kropf, K., Schloßmacher, U., Lieberwirth, I., Glasser, G., Schröder, H.C., Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS- 2 cells) in vitro (2011) Acta Biomater, 7 (6), pp. 2661-2671; Wang, X.H., Schröder, H.C., Wiens, M., Ushijima, H., Muller, W.E.G., Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation) (2012) Curr Opin Biotechnol, 23 (4), pp. 570-578; Smith, J., Hong-Shum, L., (2003) Sodium polyphosphate, in: Food additives data book, , Blackwell Science Ltd., Oxford; Tsutsumi, K., Saito, N., Kawazoe, Y., Ooi, H.K., Shiba, T., Morphogenetic study on the maturation of osteoblastic cell as induced by inorganic polyphosphate (2014) PLoS One, 9 (2); Greenwald, A.S., Boden, S.D., Goldberg, V.M., Khan, Y., Laurencin, C.T., Rosier, R.N., American Academy of Orthopaedic Surgeons; Bone graft substitutes: facts, fictions, and applications (2001) J Bone Joint Surg Am, 83, pp. 98-103; Yuan, H., van Blitterswijk, C.A., de Groot, K., de Bruijn, J.D., Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds (2006) Tissue Eng, 12 (6), pp. 1607-1615; Yuan, H., Yang, Z., De Bruijn, J.D., De Groot, K., Zhang, X., Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dogs (2001) Biomaterials, 22 (19), pp. 2617-2623; De Lange, G.L., Overman, J.R., Farré-Guasch, E., Korstjens, C.M., Hartman, B., A histomorphometric and micro–computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model (2014) Oral Surg Oral Med Oral Pathol Oral Radiol, 117 (1), pp. 8-22; Witherow, H., Cox, S., Jones, E., Carr, R., Waterhouse, N., A new scale to assess radiographic success of secondary alveolar bone grafts (2002) The Cleft Palate-Craniofacial Journal, 39 (3), pp. 255-260; Lorenz, B., Schröder, H.C., Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase (2001) Biochim. Biophys. Acta, 1547 (2), pp. 254-261; Hacchou, Y., Uematsu, T., Ueda, O., Usui, Y., Uematsu, S., Takahashi, M., Uchihashi, T., Furusawa, K., Inorganic polyphosphate: a possible stimulant of bone formation (2007) J. Dent. Res, 86 (9), pp. 893-897; Kassolis, J.D., Rosen, P.S., Reynolds, M.A., Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series (2000) J Periodontol, 71 (10), pp. 1654-1661; Roldán, J.C., Jepsen, S., Miller, J., Freitag, S., Rueger, D.C., Açil, Y., Terheyden, H., Bone formation in the presence of platelet-rich plasma vs. bone morphogenetic protein-7 (2004) Bone, 34 (1), pp. 80-90; Bouler, J.M., Pilet, P., Gauthier, O., Verron, E., Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response (2017) Acta Biomater, 15 (53), pp. 1-12; Bouwman, W.F., Bravenboer, N., Frenken, J.W.F.H., Ten Bruggenkate, C.M., Schulten, E.A.J.M., The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times (2017) Int J Implant Dent, 3 (1), pp. 2198-4034; Helder, M.N., van Esterik, F.A.S., Kwehandjaja, M.D., Ten Bruggenkate, C.M., Klein-Nulend, J., Evaluation of a new biphasic calcium phosphate for maxillary sinus floor elevation: micro-CT and histomorphometrical analyses (2018) Clin Oral Implants Res, 29 (5), pp. 488-498; Kämmerer, T.A., Palarie, V., Schiegnitz, E., Topalo, V., Schröter, A., al-Nawas, B., Kämmerer, P.W., A biphasic calcium phosphate coating for potential drug delivery affects early osseointegration of titanium implants (2017) J Oral Pathol Med, 46 (1), pp. 61-66; Oh, J.S., Seo, Y.S., Lee, G.J., You, J.S., Kim, S.G., A comparative study with biphasic calcium phosphate to deproteinized bovine bone in maxillary sinus augmentation: a prospective randomized and controlled clinical trial (2019) Int J Oral Maxillofac Implants, 34 (1), pp. 233-242; Uzeda, M.J., de Brito Resende, R.F., Sartoretto, S.C., Alves, A.T.N.N., Granjeiro, J.M., Calasans-Maia, M.D., Randomized clinical trial for the biological evaluation of two nanostructured biphasic calcium phosphate biomaterials as a bone substitute (2017) Clin Implant Dent Relat Res, 19 (5), pp. 802-811; Stähli, C., Bohner, M., Bashoor-Zadeh, M., Doebelin, N., Baroud, G., Aqueous impregnation of porous β-tricalcium phosphate scaffolds (2010) Acta Biomater, 6 (7), pp. 2760-2772; Janssen, N.G., Schreurs, R., de Ruiter, A.P., Sylvester-Jensen, H.C., Blindheim, G., Meijer, G.J., Koole, R., Vindenes, H., Microstructured beta-tricalcium phosphate for alveolar cleft repair: a two-centre study (2019) Int J Oral Maxillofac Surg, 48 (6), pp. 708-711; Farré-Guasch, E., Bravenboer, N., Helder, M.N., Schulten, E.A.J.M., Ten Bruggenkate, C.M., Blood vessel formation and bone regeneration potential of the stromal vascular fraction seeded on a calcium phosphate scaffold in the human maxillary sinus floor elevation model (2018) Materials (Basel), 11 (1), p. 161; Prins, H.J., Schulten, E.A., Ten Bruggenkate, C.M., Klein-Nulend, J., Helder, M.N., Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics (2016) Stem Cells Transl Med, 5 (10), pp. 1362-1374

Indexed by Scopus

Leave a Comment