Photo-inactivation staphylococcus aureus by using formulation of mn-n-tio2 composite coated wall paint

Maulidiyah M., Susilowati P.E., Mudhafar N.K., Salim L.O.A., Wibowo D., Muzakkar M.Z., Irwan I., Arham Z., Nurdin M.

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Jl. HEA Mokodompit Kampus Baru, Southeast Sulawesi, Kendari, 93232, Indonesia; Department of Environmental Engineering, Faculty Engineering, Universitas Muhammadiyah Kendari, Southeast Sulawesi, Kendari, 93117, Indonesia; Department of Mathematics and Natural Science, Institut Agama Islam Negeri Kendari, Southeast Sulawesi, Kendari, 93116, Indonesia


Abstract

Photo-inactivation Staphylococcus aureus bacteria based on Mn-N-TiO2 composite coated wall paint is a unique study for preparing antibacterial material applied on wall house. Utilization of mixed material plays a role in activating under visible light illumination by sunlight to inactivate bacterially. Preparation of Mn-N-TiO2 composite by the sol-gel method using reflux for 3 h and coated with wall paint. The bacterial test uses Nutrient Broth (NB) to grow S. aureus, which is tested 3 times (triple). The yellow sol-gel produced by TiO2 doped Mn and N is functionally decreased bandgap as 2.8 eV. Subsequently, SEM/EDX data has characterized that the Ti, O, C, N and Mn elements are identified from composite Meanwhile, Ca is material produced from CaCO3 as wall paint colloidal. Based on these results, we report that the high concentration of Mn-N-TiO2 composite exhibited that the high inactivation response of S. aureus bacteria with 60% concentration is 87.73%. © 2021 by the authors.

Bacterial; Photo-inactivation; S.aureus; TiO2; Wall paint


Journal

Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 2, Art No , Page 1628 – 1637, Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110236197&doi=10.33263%2fBRIAC122.16281637&partnerID=40&md5=1091b0bbef0583cb31a9852699e3a855

doi: 10.33263/BRIAC122.16281637

Issn: 20695837

Type:


References

Bal, S., Sanli, N.O., Evaluation of the effectiveness of antibacterial wall paint to enhance the hygienic conditions of the interiors (2020) J. Fac. Eng. Archit. Gazi Univ, 35, pp. 1913-1922; Gandolfo, A., Bartolomei, V., Truffier-Boutry, D., Temime-Roussel, B., Brochard, G., Bergé, V., Wortham, H., Gligorovski, S., The impact of photocatalytic paint porosity on indoor NOx and HONO levels (2020) Phys. Chem. Chem. Phys, 22, pp. 589-598. , https://doi.org/10.1039/C9CP05477D; Karlsson, M.C.F., Abbas, Z., Bordes, R., Cao, Y., Larsson, A., Taylor, P., Steenari, B.-M., Characterisation of silicon, zirconium and aluminium coated titanium dioxide pigments recovered from paint waste (2019) Dye. Pigment, 162, pp. 145-152. , https://doi.org/10.1016/j.dyepig.2018.06.028; Maulidiyah, M., Darmawan, A., Hasan, A., Wibowo, D., Salim, L.O.A., Ansharullah, A., Mustapa, F., Nurdin, M., Isolation, structure elucidation, and antidiabetic test of vicanicin compound from lichen Teloschistes flavicans (2020) J. Appl. Pharm. Sci, 10, pp. 001-009. , https://doi.org/10.7324/JAPS.2020.10111; Děkanovský, L., Elashnikov, R., Kubiková, M., Vokatá, B., Švorčík, V., Lyutakov, O., Dual‐Action flexible antimicrobial material: switchable self‐cleaning, antifouling, and smart drug release (2019) Adv. Funct. Mater, 29, p. 1901880. , https://doi.org/10.1002/adfm.201901880; Wojciechowski, K., Gutarowicz, M., Janke, K., Jurek, I., Kaczorowski, M., Mierzejewska, J., Parzuchowski, P., Colloidal Stability of Positively Charged Dispersions of Styrene and Acrylic Copolymers in the Presence of TiO2 and CaCO3 (2019) Colloids and Interfaces, 3. , https://doi.org/10.3390/colloids3010020; Peeters, H., Keulemans, M., Nuyts, G., Vanmeert, F., Li, C., Minjauw, M., Detavernier, C., Verbruggen, S.W., Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings (2020) Appl. Catal. B Environ, 267, p. 118654. , https://doi.org/10.1016/j.apcatb.2020.118654; Killivalavan, A., Prabakar, A.C., Chandra Babu, K., Naidu, B., Sathyaseelan, G., Rameshkumar, D., Sivakumar, K., Manikandan, B.R.R., Synthesis and characterization of pure and Cu doped CeO2 nanoparticles: photocatalytic and antibacterial activities evaluation (2020) Biointerface Res. Appl. Chem, 10, pp. 5306-5311. , https://doi.org/10.33263/BRIAC102.306311; Khanmohammadi, S., Karimian, R., Hajibonabi, F., Mostafidi, E., Tanomand, A., Edjlali, L., Azami, Z.K., Kafil, H.S., Polythiophene/TiO2 and polythiophene/ZrO2 nanocomposites: Physical and antimicrobial properties against common infections (2018) Biointerface Res. Appl. Chem, 8, pp. 3457-3462; Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H., Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review (2019) J. Environ. Chem. Eng, 7, p. 103248. , https://doi.org/10.1016/j.jece.2019.103248; Maulidiyah, M., Azis, T., Nurwahidah, A.T., Wibowo, D., Nurdin, M., Photoelectrocatalyst of Fe co-doped N-TiO2/Ti nanotubes: Pesticide degradation of thiamethoxam under UV–visible lights (2017) Environ. Nanotechnology, Monit. Manag, 8, pp. 103-111. , https://doi.org/10.1016/j.enmm.2017.06.002; Nurdin, M., Maulidiyah, M., Salim, L.O.A., Muzakkar, M.Z., Umar, A.A., High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode (2019) Microchem. J, 145. , https://doi.org/10.1016/j.microc.2018.11.050; Kapridaki, C., Maravelaki-Kalaitzaki, P., TiO2–SiO2–PDMS nanocomposite hydrophobic coating with self-cleaning properties for marble protection (2013) Prog. Org. Coatings, 76, pp. 400-410. , https://doi.org/10.1016/j.porgcoat.2012.10.006; Munafò, P., Quagliarini, E., Goffredo, G.B., Bondioli, F., Licciulli, A., Durability of nano-engineered TiO2 self-cleaning treatments on limestone (2014) Constr. Build. Mater, 65, pp. 218-231. , https://doi.org/10.1016/j.conbuidmat.2014.04.112; Jimenez-Relinque, E., Rodriguez-Garcia, J.R., Castillo, A., Castellote, M., Characteristics and efficiency of photocatalytic cementitious materials: Type of binder, roughness and microstructure (2015) Cem. Concr. Res, 71, pp. 124-131. , https://doi.org/10.1016/j.cemconres.2015.02.003; Qing, Y., Yang, C., Sun, Y., Zheng, Y., Wang, X., Shang, Y., Wang, L., Liu, C., Facile fabrication of superhydrophobic surfaces with corrosion resistance by nanocomposite coating of TiO2 and polydimethylsiloxane (2015) Colloids Surfaces A Physicochem. Eng. Asp, 484, pp. 471-477. , https://doi.org/10.1021/am501539b; Natsir, M., Putri, Y.I., Wibowo, D., Maulidiyah, M., Salim, L.O.A., Azis, T., Bijang, C.M., Nurdin, M., Effects of Ni–TiO2 pillared Clay–Montmorillonite composites for photocatalytic enhancement against reactive orange under visible light (2021) J. Inorg. Organomet. Polym. Mater, pp. 1-11. , https://doi.org/10.1007/s10904-021-01980-9; Nurdin, M., Dali, N., Irwan, I., Maulidiyah, M., Arham, Z., Ruslan, R., Hamzah, B., Wibowo, D., Selectivity Determination of Pb2+ Ion based on TiO2-Ionophores BEK6 as carbon paste electrode composite (2018) Anal. Bioanal. Electrochem, 10, pp. 1538-1547; Dzinun, H., Othman, M.H.D., Ismail, A.F., Puteh, M.H., Rahman, M.A., Jaafar, J., Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual layer hollow fibre membranes (2015) Chem. Eng. J, 269, pp. 255-261. , https://doi.org/10.1016/j.cej.2015.01.114; Nurdin, M., Arham, Z., Rasyid, J., Maulidiyah, M., Mustapa, F., Sosidi, H., Ruslan, R., Salim, L.O.A., Electrochemical performance of carbon paste electrode modified TiO2/Ag-Li (CPE-TiO2/Ag-Li) in determining fipronil compound (2021) J. Phys. Conf. Ser, 1763, p. 012067. , https://doi.org/10.1088/1742-6596/1763/1/012067; Li, G., Fang, K., Ou, Y., Yuan, W., Yang, H., Zhang, Z., Wang, Y., Surface study of the reconstructed anatase TiO2 (001) surface (2021) Prog. Nat. Sci. Mater. Int, 31, pp. 1-13. , https://doi.org/10.1016/j.pnsc.2020.11.002; Liu, X., Fu, J., Electronic and elastic properties of the tetragonal anatase TiO2 structure from first principle calculation (2020) Optik (Stuttg), , https://doi.org/10.1016/j.ijleo.2020.164342; Muzakkar, M.Z., Umar, A.A., Ilham, I., Saputra, Z., Zulfikar, L., Chalcogenide material as high photoelectrochemical performance Se doped TiO2/Ti electrode: Its application for Rhodamine B degradation (2019) J. Phys. Conf. Ser, 1242, pp. 1-8. , https://doi.org/10.1088/1742-6596/1242/1/012016; Paolini, R., Borroni, D., Pedeferri, M., Diamanti, M.V., Self-cleaning building materials: The multifaceted effects of titanium dioxide (2018) Constr. Build. Mater, 182, pp. 126-133. , https://doi.org/10.1016/j.conbuildmat.2018.06.047; Santhana, V., Thangaraju, D., Tanaka, A., Inami, W., JayaKumar, S., Matsuda, S., Development of Hybrid TiO2/Paint Sludge Extracted Microbe Composite for Enhanced Photocatalytic Dye Degradation (2020) J. Inorg. Organomet. Polym. Mater, 30, pp. 2805-2813. , https://doi.org/10.1007/s10904-020-01448-2; Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A. V, Reddy, C.V., Recent progress in metal-doped TiO2, non-metal doped/co-doped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis (2020) Int. J. Hydrogen Energy, 45, pp. 7764-7778. , https://doi.org/10.1016/j.ijhydene.2019.07.241; Lin, H., Shih, C., Efficient one-pot microwave-assisted hydrothermal synthesis of M (M= Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting (2016) J. Mol. Catal. A Chem, 411, pp. 128-137. , https://doi.org/10.1016/j.molcata.2015.10.026; Sharotri, N., Sharma, D., Sud, D., Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants (2019) J. Mater. Res. Technol, , https://doi.org/10.1016/j.jmrt.2019.07.008; Pan, L., Xu, G., Guo, T., Zhang, B., Xiang, S., Fang, G., Li, J., Study on thermochromic-emissivity performance of Mn doped TiO2 under temperature fluctuations (2020) Infrared Phys. Technol, , https://doi.org/10.1016/j.infrared.2020.103192; Habibi, S., Jamshidi, M., Sol–gel synthesis of carbon-doped TiO2 nanoparticles based on microcrystalline cellulose for efficient photocatalytic degradation of methylene blue under visible light (2020) Environ. Technol. (United Kingdom), pp. 3233-3247. , https://doi.org/10.1080/09593330.2019.1604815; Bento, R.T., Correa, O. V., Pillis, M.F., On the surface chemistry and the reuse of sulfur-doped TiO2 films as photocatalysts (2021) Mater. Chem. Phys, 261, p. 124231. , https://doi.org/10.1016/j.matchemphys.2021.124231; Du, M., Qiu, B., Zhu, Q., Xing, M., Zhang, J., Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity (2019) Catal. Today, 327, pp. 340-346. , https://doi.org/10.1016/j.cattod.2018.03.066; Feng, X., Wang, P., Hou, J., Qian, J., Ao, Y., Wang, C., Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: Synergistic effect and intermediates analysis (2018) J. Hazard. Mater, 351, pp. 196-205. , https://doi.org/10.1016./j.jhazmat.2018.03.013; Calisir, M.D., Gungor, M., Demir, A., Kilic, A., Khan, M.M., Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities (2020) Ceram. Int, , https://doi.org/10.1016/j.ceramint.2020.03.250; Zeng, L., Lu, Z., Li, M., Yang, J., Song, W., Zeng, D., Xie, C., A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity (2016) Appl. Catal. B Environ, 183, pp. 308-316. , https://doi.org/10.1016/j.apcatb.2015.10.048; Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L., Enhanced nitrogen doping in TiO2 nanoparticles (2003) Nano Lett, 3, pp. 1049-1051. , https://doi.org/10.1021/nl034332o; Chong, M.N., Tneu, Z.Y., Poh, P.E., Jin, B., Aryal, R., Synthesis, characterisation and application of TiO2– zeolite nanocomposites for the advanced treatment of industrial dye wastewater (2015) J. Taiwan Inst. Chem. Eng, 50, pp. 288-296. , https://doi.org/10.1016/j.jtice.2014.12.013; Mursalim, L.O., Ruslan, A.M., Safitri, R.A., Azis, T., Maulidiyah, Wibowo, D., Nurdin, M., Synthesis and photoelectrocatalytic performance of Mn-N-TiO2/Ti electrode for electrochemical sensor (2017) Proceedings of the IOP Conference Series: Materials Science and Engineering, 267. , https://doi.org/10.1088/1757-899X/267/1/012006; Nurdin, M., Ramadhan, L.O.A.N., Darmawati, D., Maulidiyah, M., Wibowo, D., Synthesis of Ni, N co-doped TiO2 using microwave-assisted method for sodium lauryl sulfate degradation by photocatalyst (2017) J. Coatings Technol. Res, 15, pp. 395-402. , https://doi.org/10.1007/s11998-017-9976-8; Nurdin, M., Muzakkar, M.Z., Maulidiyah, M., Maulidiyah, N., Wibowo, D., Plasmonic Silver—N/TiO2 Effect on Photoelectrocatalytic Oxidation Reaction (2016) J. Mater. Environ. Sci, 7, pp. 3334-3343; Maulidiyah, M., Azis, T., Lindayani, L., Wibowo, D., Salim, L.O.A., Aladin, A., Nurdin, M., Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide (2019) J. Electrochem. Sci. Technol, 10, pp. 394-401. , https://doi.org/10.33961/jecst.2019.00178; Peng, T., Ray, S., Veeravalli, S.S., Lalman, J.A., Arefi-Khonsari, F., The role of hydrothermal conditions in determining 1D TiO2 nanomaterials bandgap energies and crystal phases (2018) Mater. Res. Bull, 105, pp. 104-113. , https://doi.org/10.1016/j.materresbull.2018.04.021; Nurdin, M., Zaeni, A., Rammang, E.T., Maulidiyah, M., Wibowo, D., Reactor design development of chemical oxygen demand flow system and its application (2017) Anal. Bioanal. Electrochem, 9, pp. 480-494; Zhang, Q., Wang, H., Fan, X., Lv, F., Chen, S., Quan, X., Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment (2016) Surf. Coatings Technol, , https://doi.org/10.1016/j.surfcoat.2016.04.054; Gurkan, Y.Y., Turkten, N., Hatipoglu, A., Cinar, Z., Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT (2012) Chem. Eng. J, 184, pp. 113-124. , https://doi.org/10.1016/j.cej.2012.01.011; Choudhury, B., Borah, B., Choudhury, A., Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium (2012) Photochem. Photobiol, 88, pp. 257-264. , https://doi.org/10.1111/j.1751-1097.2011.01064.x

Indexed by Scopus

Leave a Comment