Pedotransfer functions for estimating soil hydraulic properties from saturation to dryness

Rudiyanto, Minasny B., Chaney N.W., Maggi F., Goh Eng Giap S., Shah R.M., Fiantis D., Setiawan B.I.

Program of Crop Science, Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; School of Life & Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006, Australia; Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States; Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Soil Science, Faculty of Agriculture, Andalas University, Kampus Limau Manis, Padang, 25163, Indonesia; Department of Civil and Environmental Engineering, IPB University, Bogor, 16680, Indonesia


Abstract

Current pedotransfer functions (PTFs) for estimating soil hydraulic curves are mostly developed to predict parameters of the Mualem-van Genuchten hydraulic functions. The Mualem-van Genuchten functions are recognised to be inadequate in representing soil water retention hydraulic conductivity curves at low pressure head ranges. This study presents neuroFX, a suite of PTFs, for estimating soil water retention and unsaturated hydraulic conductivity curves from saturation to complete dryness based on the Fredlund-Xing-Wang (FXW) model. The PTFs were calibrated using the neuro-m neural networks approach with three different sets of inputs: (1) SSCBD uses the sand, silt, and clay fractions, and bulk density; (2) SSC uses the sand, silt and clay fractions, and (3) soil textural class input. NeuroFX PTFs were trained using fitted parameters of the FXW model from selected data in the UNSODA database and validated using 5-fold cross-validation that was repeated 10 times. NeuroFX provides an uncertainty estimate of hydraulic parameters. The prediction quality of neuroFX was compared with two existing PTFs: ROSETTA and Brunswick-Weber (BW) PTFs. Based on multiple criteria, we found that neuroFX performed better than ROSETTA and BW PTFs in the same test sample. NeuroFX PTF with the SSCBD input yielded the best prediction of soil water retention and unsaturated hydraulic conductivity curves with RMSE in water content of 0.052 cm3 cm−3 and RMSE in log10(K) = 0.732 (in the magnitude of cm day−1), indicating the importance of including bulk density in the input of PTFs. NeuroFX was then used to map parameters of the FXW model for the whole of the continental USA over 6 depth intervals. The code of neuroFX in R software is available in Supplementary Material 1. © 2021

Drying range; Pedotransfer function; Soil hydraulic properties; Soil water retention; Unsaturated hydraulic conductivity


Journal

Geoderma

Publisher: Elsevier B.V.

Volume 403, Issue , Art No 115194, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107751889&doi=10.1016%2fj.geoderma.2021.115194&partnerID=40&md5=0af63d0c88c7623be52560b11e3b0d0d

doi: 10.1016/j.geoderma.2021.115194

Issn: 00167061

Type:


References

Adams, W.A., The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils (1973) J. Soil Sci., 24, pp. 10-17. , In this issue; Andrews, F.T., Croke, B.F.W., Jakeman, A.J., An open software environment for hydrological model assessment and development (2011) Environ. Model. Softw., 26, pp. 1171-1185; Brooks, R., Corey, A., Hydraulic properties of porous media (1964), State Univ Hydrol. Pap. Color; Cai, W., Cowan, T., Briggs, P., Raupach, M., Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia (2009) Geophys. Res. Lett., 36; Chaney, N.W., Minasny, B., Herman, J.D., Nauman, T.W., Brungard, C.W., Morgan, C.L.S., McBratney, A.B., Yimam, Y., POLARIS Soil Properties: 30-m Probabilistic Maps of Soil Properties Over the Contiguous United States (2019) Water Resour. Res., 55, pp. 2916-2938; de Rooij, G.H., Mai, J., Madi, R., Sigmoidal water retention function with improved behaviour in dry and wet soils (2021) Hydrol. Earth Syst. Sci., 25, pp. 983-1007; Dijkema, J., Koonce, J.E., Shillito, R.M., Ghezzehei, T.A., Berli, M., (2018), https://do.org/, van der Ploeg, M.J., van Genuchten, M.T. Water Distribution in an Arid Zone Soil: Numerical Analysis of Data from a Large Weighing Lysimeter. Vadose Zo. J. 17, 170035. 10.2136/vzj2017.01.0035; Duan, Q., Sorooshian, S., Gupta, V.K., Optimal use of the SCE-UA global optimization method for calibrating watershed models (1994) J. Hydrol., 158, pp. 265-284; Fredlund, D.G., Xing, A., Equations for the soil-water characteristic curve (1994) Can. Geotech. J., 31, pp. 512-532; Grant, C.D., Groenevelt, P.H., Robinson, N.I., (2010), Application of the Groenevelt-Grant soil water retention model to predict the hydraulic conductivity. Australian journal of soil research; Guglielmo, M., Zambonini, D., Porta, G., Malik, A., Tang, F.H.M., Maggi, F., Time- and depth-resolved mechanistic assessment of water stress in Australian ecosystems under the CMIP6 scenarios (2021) Adv. Water Resour., 148; Hodnett, M.G., Tomasella, J., Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils (2002) Geoderma, 108, pp. 155-180; (2018), Huf Dos Reis, A.M., Armindo R.A., Durães, M.F., De Jong Van Lier, Q. Evaluating pedotransfer functions of the Splintex model. Eur. J. Soil Sci. 69, 685–697. 10.1111/ejss.12675; Iden, S.C., Durner, W., Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A (2014) Peters. Water Resour. Res., 50, pp. 7530-7534; Iden, S.C., Peters, A., Durner, W., Improving prediction of hydraulic conductivity by onstraining capillary bundle models to a maximum pore size (2015) Adv. Water Resour., 85, pp. 6-92; Inforsato, L., (2020), de Jong van Lier, Q., Pinheiro, E.A.R. An extension of water retention and conductivity functions to dryness. Soil Sci. Soc. Am. J. 84, 45–52. 10.1002/saj2.20014; Lebeau, M., Konrad, J.-M., A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media (2010) Water Resour. Res., 46; Liao, K., Lai, X., Zhou, Z., Zhu, Q., Han, Q., A Simple and Improved Model for Describing Soil Hydraulic Properties from Saturation to Oven Dryness (2018) Vadose Zo. J., 17, pp. 1-8; Luo, Y., Ghezzehei, T.A., Yu, Z., Berli, M., Modeling near-surface water redistribution in a desert soil (2020) Vadose Zo. J., 19; McBratney, A.B., Minasny, B., Cattle, S.R., Vervoort, R.W., (2002), From pedotransfer functions to soil inference systems. Geoderma 109, 41–73. ttps://doi.org/10.1016/S0016-7061(02)00139-8; Minasny, B., McBratney, A.B., Limited effect of organic matter on soil available water capacity (2018) Eur. J. Soil Sci., 69, pp. 39-47; Minasny, B., McBratney, A.B., The Neuro-m Method for Fitting Neural Network Parametric Pedotransfer Functions (2002) Soil Sci. Soc. Am. J., 66, pp. 352-361; Moeys, J., (2014), http://cran.r-project.org/web/packages/soiltexture/vignettes/soiltexture_vignette.pdf, The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data [WWW Document]. URL; Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., Vereecken, H., A global data set of soil hydraulic properties and sub-grid variability of sil water retention and hydraulic~conductivity curves (2017) Earth Syst. Sci. Data, 9, pp. 529-543; Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media (1976) Water Resour. Res., 12, pp. 513-522; Nemes, A., Schaap, M.G., Leij, F.J., Wösten, J.H.M., Description of the unsaturated soil hydraulic database UNSODA version 2.0 (2001) J. Hydrol., 251, pp. 151-162; Padarian, J., Minasny, B., McBratney, A.B., Machine learning and soil sciences: a review aided by machine learning tools (2020) SOIL, 6, pp. 35-52; Peters, A., Reply to comment by S. Iden and W. Durner on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” (2014) Water Resour. Res., 50, pp. 7535-7539; Peters, A., Simple consistent models for water retention and hydraulic conductivity in the complete moisture range (2013) Water Resour. Res., 49, pp. 6765-6780; Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., Bloodworth, H., Effect of soil organic carbon on soil water retention (2003) Geoderma, 116, pp. 61-76; (2020), Rudiyanto, Minasny, B., Shah, R.M., Setiawan, B.I., van Genuchten, M.T. Simple functions for describing soil water retention and the unsaturated hydraulic conductivity from saturation to complete dryness. J. Hydrol. 588, 125041. 10.1016/j.jhydrol.2020.125041; (2015), Rudiyanto, Sakai, M., van Genuchten, M.T., Alazba, A.A., Setiawan, B.I., Minasny, B. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis. Water Resour. Res. 51, 8757–8772. 10.1002/2015WR017703; Saito, H., Šimůnek, J., Mohanty, B.P., Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone (2006) Vadose Zo. J., 5, pp. 784-800; Sakai, M., Toride, N., Šimůnek, J., Water and Vapor Movement with Condensation and Evaporation in a Sandy Column (2009) Soil Sci. Soc. Am. J.; Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Marx, A., Anthropogenic warming exacerbates European soil moisture droughts (2018) Nat. Clim. Chang., 8, pp. 421-426; Schaap, M.G., Leij, F.J., van Genuchten, M.T., rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions (2001) J. Hydrol., 251, pp. 163-176; Schneider, M., Goss, K.-U.U., Prediction of the water sorption isotherm in air dry soils (2012) Geoderma, 170, pp. 64-69; Tian, Z., Chen, J., Cai, C., Gao, W., Ren, T., Heitman, J.L., Horton, R., New pedotransfer functions for soil water retention curves that better account for bulk density effects (2021) Soil Tillage Res., 205; Trenberth, K.E., Dai, A., Rasmussen, R.M., Parsons, D.B., The Changing Character of Precipitation (2003) Bull. Am. Meteorol. Soc., 84, pp. 1205-1218; van Genuchten, M., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils (1980) Soil Sci. Soc. Am. J., 8, pp. 892-898; Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Vereecken, H., Pedotransfer Functions in Earth System Science: Challenges and Perspectives (2017) Rev. Geophys., 55, pp. 1199-1256; Vereecken, H., Maes, J., Feyen, J., Darius, P., Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content (1989) Soil Sci., 148; Vereecken, H., (2017), https//doi.org/10.2136/vzj2008.0062, Van Looy, K., Weynants, M., Javaux, M. Soil retention and conductivity curve data base sDB, link to MATLAB 10.1594/PANGAEA.879233. files. Suppl. to Weynants, Melanie; Vereecken, Harry; Javaux, Mathieu Revisiting Vereecken Pedotrans. Funct. Introd. a Closed-Form Hydraul. Model. Vadose Zo. Journal, 8(1), 86-95; Vogel, T., van Genuchten, M.T., Cislerova, M., Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions (2000) Adv. Water Resour., 24, pp. 133-144; Wang, Y., Jin, M., Deng, Z., Alternative Model for Predicting Soil Hydraulic Conductivity Over the Complete Moisture Range (2018) Water Resour. Res., 54, pp. 6860-6876; Wang, Y., Ma, J., Guan, H., A mathematically continuous model for describing the hydraulic properties of unsaturated porous media over the entire range of matric suctions (2016) J. Hydrol., 541, pp. 873-888; Wang, Y., Ma, J., Zhang, Y., Zhao, M., Edmunds, W.M., A new theoretical model accounting for film flow in unsaturated porous media (2013) Water Resour. Res., 49, pp. 5021-5028; Weber, T.K.D., Diamantopoulos, E., Weynants, M., 2020a. Package ‘spsh’: Estimation and Prediction of Parameters of Various Soil Hydraulic Property Models; Weber, T.K.D., Durner, W., Streck, T., Diamantopoulos, E., A Modular Framework for Modeling Unsaturated Soil Hydraulic Properties Over the Full Moisture Range (2019) Water Resour. Res., 55, pp. 4994-5011; Weber, T.K.D., Finkel, M., da Conceição Gonçalves, M., Vereecken, H., Diamantopoulos, E., 2020b. Pedotransfer Function for the Brunswick Soil Hydraulic Property Model and Comparison to the van Genuchten-Mualem Model. Water Resour. Res. 56, e2019WR026820. 10.1029/2019WR026820; Weynants, M., Montanarella, L., Toth, G., Arnoldussen, A., (2013), Anaya Romero, M., Bilas, G., Borresen, T., Cornelis, W., Daroussin, J., Gonalves, M.D.C., Haugen, L.-E., Hennings, V., Houskova, B., Iovino, M., Javaux, M., Keay, C.A., Katterer, T., Kvaerno, S., Laktinova, T., Lamorski, K., Lilly, A., Mako, A., Matula, S., Morari, F., Nemes, A., Patyka, N.V., Romano, N., Schindler, U., Shein, E., Slawinski, C., Strauss, P., Tath, B., Woesten, H. European HYdropedological Data Inventory (EU-HYDI). EUR Scientific and Technical Research series; Zhang, Y., Schaap, M.G., Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3) (2017) J. Hydrol., 547, pp. 39-53; Zhang, Y., Schaap, M.G., Wei, Z., (2020), Development of Hierarchical Ensemble Model and Estimates of Soil Water Retention With Global Coverage. Geophys. Res. Lett. 47, e2020GL088819. 10.1029/2020GL088819; Zhang, Z.F., Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation (2011) Vadose Zo. J., 10, pp. 1299-1308

Indexed by Scopus

Leave a Comment