Organic matter mineralization in modern and ancient ferruginous sediments

Friese A., Bauer K., Glombitza C., Ordoñez L., Ariztegui D., Heuer V.B., Vuillemin A., Henny C., Nomosatryo S., Simister R., Wagner D., Bijaksana S., Vogel H., Melles M., Russell J.M., Crowe S.A., Kallmeyer J.

GFZ German Research Centre for Geosciences, Potsdam, Germany; Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada; Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland; Center for Geomicrobiology, Aarhus University, Aarhus, Denmark; Department of Earth Sciences, University of Geneva, Geneva, Switzerland; MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany; Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor, West Java, Indonesia; Institute of Geosciences, University of Potsdam, Potsdam, Germany; Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia; Institute of Geological Sciences & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland; Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany; Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, United States


Deposition of ferruginous sediment was widespread during the Archaean and Proterozoic Eons, playing an important role in global biogeochemical cycling. Knowledge of organic matter mineralization in such sediment, however, remains mostly conceptual, as modern ferruginous analogs are largely unstudied. Here we show that in sediment of ferruginous Lake Towuti, Indonesia, methanogenesis dominates organic matter mineralization despite highly abundant reactive ferric iron phases like goethite that persist throughout the sediment. Ferric iron can thus be buried over geologic timescales even in the presence of labile organic carbon. Coexistence of ferric iron with millimolar concentrations of methane further demonstrates lack of iron-dependent methane oxidation. With negligible methane oxidation, methane diffuses from the sediment into overlying waters where it can be oxidized with oxygen or escape to the atmosphere. In low-oxygen ferruginous Archaean and Proterozoic oceans, therefore, sedimentary methane production was likely favored with strong potential to influence Earth’s early climate. © 2021, The Author(s).


Nature Communications

Publisher: Nature Research

Volume 12, Issue 1, Art No 2216, Page – , Page Count

Journal Link:

doi: 10.1038/s41467-021-22453-0

Issn: 20411723

Type: All Open Access, Gold, Green


Berner, R.A., Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time (1989) Palaeogeogr. Palaeoclimatol. Palaeoecol., 75, pp. 97-122; Keil, R.G., Terrestrial influences on carbon burial at sea (2011) Proc. Natl Acad. Sci. USA, 108, pp. 9729-9730. , COI: 1:CAS:528:DC%2BC3MXnvFeitr0%3D, PID: 21633008; Jørgensen, B.B., Mineralization of organic matter in the sea bed-the role of sulphate reduction (1982) Nature, 296, pp. 643-644; Froelich, P.N., Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis (1979) Geochim. Cosmochim. Acta, 43, pp. 1075-1090. , COI: 1:CAS:528:DyaL3cXnvFOntA%3D%3D; Knittel, K., Boetius, A., Anaerobic oxidation of methane: progress with an unknown process (2009) Annu. Rev. Microbiol., 63, pp. 311-334. , COI: 1:CAS:528:DC%2BD1MXhtlSitLjN, PID: 19575572; Hartnett, H.E., Keil, R.G., Hedges, J.I., Devol, A.H., Influence of oxygen exposure time on organic carbon preservation in continental margin sediments (1998) Nature, 391, pp. 572-574. , COI: 1:CAS:528:DyaK1cXhtVSntrg%3D; Crowe, S.A., Sulfate was a trace constituent of Archean seawater (2014) Science, 346, pp. 735-739. , COI: 1:CAS:528:DC%2BC2cXhvVGls7rL, PID: 25378621; Poulton, S.W., Canfield, D.E., Ferruginous conditions: a dominant feature of the ocean through Earth’s history (2011) Elements, 7, pp. 107-112. , COI: 1:CAS:528:DC%2BC3MXntVCmsr8%3D; Roden, E.E., Wetzel, R.G., Competition between Fe (III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments (2003) Microb. Ecol., 45, pp. 252-258. , COI: 1:CAS:528:DC%2BD3sXkvFGls7k%3D, PID: 12658519; Roden, E.E., Diversion of electron flow from methanogenesis to crystalline Fe (III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms (2003) Appl. Environ. Microbiol., 69, pp. 5701-5706. , COI: 1:CAS:528:DC%2BD3sXntlSisbw%3D; Fortney, N.W., Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park (2016) Geobiology, 14, pp. 255-275. , COI: 1:CAS:528:DC%2BC28XlslWiurk%3D, PID: 26750514; Percak-Dennett, E.M., Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater (2011) Geobiology, 9, pp. 205-220. , COI: 1:CAS:528:DC%2BC3MXmslWmt7w%3D, PID: 21504536; Crowe, S.A., The methane cycle in ferruginous Lake Matano (2011) Geobiology, 9, pp. 61-78. , COI: 1:CAS:528:DC%2BC3MXjs1Gnu78%3D, PID: 20854329; Vuillemin, A., Geomicrobiological features of ferruginous sediments from Lake Towuti (2016) Indonesia. Front. Microbiol., 7. ,; Crowe, S.A., Photoferrotrophs thrive in an Archean Ocean analogue (2008) Proc. Natl Acad. Sci. USA, 105, pp. 15938-15943. , COI: 1:CAS:528:DC%2BD1cXht1Ors7jL, PID: 18838679; Sheppard, R.Y., Characterization of Iron in Lake Towuti sediment (2019) Chem. Geol., 512, pp. 11-30. , COI: 1:CAS:528:DC%2BC1MXktlCht74%3D; Russell, J.M., The Towuti Drilling Project: paleoenvironments, biological evolution, and geomicrobiology of a tropical Pacific lake (2016) Sci. Drill., 21, pp. 29-40; Costa, K.M., Russell, J.M., Vogel, H., Bijaksana, S., Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years (2015) Palaeogeogr. Palaeoclimatol. Palaeoecol., 417, pp. 467-475; Russell, J.M., Glacial forcing of central Indonesian hydroclimate since 60,000 y BP (2014) Proc. Natl Acad. Sci. USA, 111, pp. 5100-5105. , COI: 1:CAS:528:DC%2BC2cXkslGjt7c%3D, PID: 24706841; Lovley, D.R., Phillips, E.J., Organic matter mineralization with reduction of ferric iron in anaerobic sediments (1986) Appl Environ. Microbiol., 51, pp. 683-689. , COI: 1:CAS:528:DyaL28XhvVeis78%3D, PID: 16347032; Canfield, D.E., The geochemistry of river particulates from the continental USA: major elements (1997) Geochim. Cosmochim. Acta, 61, pp. 3349-3365. , COI: 1:CAS:528:DyaK2sXmt1KltLw%3D, PID: 11540476; Lovley, D.R., Phillips, E.J., Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River (1986) Appl. Environ. Microbiol., 52, pp. 751-757. , COI: 1:CAS:528:DyaL28XmtFekur4%3D, PID: 16347168; Poulton, S.W., Canfield, D.E., Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates (2005) Chem. Geol., 214, pp. 209-221. , COI: 1:CAS:528:DC%2BD2MXkvVCjsg%3D%3D; Zegeye, A., Green rust formation controls nutrient availability in a ferruginous water column (2012) Geology, 40, pp. 599-602. , COI: 1:CAS:528:DC%2BC38Xht1ShtL%2FI; Bauer, K.W., Magnetite biomineralization in ferruginous waters and early Earth evolution (2020) Earth Planet. Sci. Lett., 549, p. 116495. , COI: 1:CAS:528:DC%2BB3cXhsFajt73J; Vuillemin, A., Formation of diagenetic siderite in modern ferruginous sediments (2019) Geology, 47, pp. 540-544. , COI: 1:CAS:528:DC%2BC1MXhs1OisbnE; Ordoñez, L., Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis (2019) Org. Geochem., 134, pp. 32-44. , COI: 1:CAS:528:DC%2BC1MXhtFWksrnN; Crowe, S.A., Roberts, J.A., Weisener, C.G., Fowle, D.A., Alteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria (2007) Geobiology, 5, pp. 63-73. , COI: 1:CAS:528:DC%2BD2sXltVWlurc%3D; Canfield, D.E., Raiswell, R., Bottrell, S., The reacivity of sedimentary iron minerals towards sulfide (1992) Am. J. Sci., 292, pp. 659-683. , COI: 1:CAS:528:DyaK3sXkvF2qu7k%3D; Canfield, D.E., Thamdrup, B., Hansen, J.W., The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction (1993) Geochim. Cosmochim. Acta, 57, pp. 3867-3883. , COI: 1:CAS:528:DyaK3sXmtlSgu78%3D, PID: 11537734; Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane (1999) Chem. Geol., 161, pp. 291-314. , COI: 1:CAS:528:DyaK1MXntFKntr0%3D; Schwertmann, U., Cambier, P., Murad, E., Properties of Goethites of varying crystallinity (1985) Clays Clay Miner., 33, pp. 369-378. , COI: 1:CAS:528:DyaL2MXlslSqsLk%3D; Royer, R.A., Dempsey, B.A., Jeon, B.H., Burgos, W.D., Inhibition of biological reductive dissolution of hematite by ferrous iron (2004) Environ. Sci. Technol., 38, pp. 187-193. , COI: 1:CAS:528:DC%2BD3sXpt1ajsLs%3D, PID: 14740735; Urrutia, M.M., Roden, E.E., Zachara, J.M., Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides (1999) Environ. Sci. Technol., 33, pp. 4022-4028. , COI: 1:CAS:528:DyaK1MXmtF2ku74%3D; Raghoebarsing, A.A., A microbial consortium couples anaerobic methane oxidation to denitrification (2006) Nature, 440, pp. 918-921. , COI: 1:CAS:528:DC%2BD28XjsVWktb4%3D, PID: 16612380; Deutzmann, J.S., Schink, B., Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake (2011) Appl. Environ. Microbiol., 77, pp. 4429-4436. , COI: 1:CAS:528:DC%2BC3MXptFWrtr4%3D, PID: 21551281; Sivan, O., Geochemical evidence for iron‐mediated anaerobic oxidation of methane (2011) Limnol. Oceanogr., 56, pp. 1536-1544. , COI: 1:CAS:528:DC%2BC3MXhtVCrurjO; Beulig, F., Røy, H., McGlynn, S.E., Jørgensen, B.B., Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea (2019) ISME J., 13, pp. 250-262. , COI: 1:CAS:528:DC%2BC1cXhs1ylsLvO, PID: 30194429; Vuillemin, A., Metabolic potential of microbial communities from ferruginous sediments (2018) Environ. Microbiol., 20, pp. 4297-4313. , COI: 1:CAS:528:DC%2BC1cXisF2itbbO, PID: 29968357; Holmkvist, L., Ferdelman, T.G., Jørgensen, B.B., A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) (2011) Geochim. Cosmochim. Acta, 75, pp. 3581-3599. , COI: 1:CAS:528:DC%2BC3MXmtVWntbo%3D; Roden, E.E., Fe(III) oxide reactivity toward biological versus chemical reduction (2003) Environmental Science & Technology, 37, pp. 1319-1324; Jones, A.M., Collins, R.N., Rose, J., Waite, T.D., The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals (2009) Geochim. Cosmochim. Acta, 73, pp. 4409-4422. , COI: 1:CAS:528:DC%2BD1MXnslKksLc%3D; Jones, C., Nomosatryo, S., Crowe, S.A., Bjerrum, C.J., Canfield, D.E., Iron oxides, divalent cations, silica, and the early earth phosphorus crisis (2015) Geology, 43, pp. 135-138. , COI: 1:CAS:528:DC%2BC2MXktF2mtrs%3D; Canfield, D.E., The early history of atmospheric oxygen: homage to Robert M. Garrels (2005) Annu. Rev. Earth Planet. Sci., 33, pp. 1-36. , COI: 1:CAS:528:DC%2BD2MXlsV2hsL8%3D; Laakso, T.A., Schrag, D.P., A small marine biosphere in the Proterozoic (2019) Geobiology, 17, pp. 161-171. , COI: 1:CAS:528:DC%2BC1MXjtVOltL4%3D, PID: 30417524; Canfield, D.E., Rosing, M.T., Bjerrum, C., Early anaerobic metabolisms (2006) Philos. Trans. R. Soc. Lond. Ser. B, 361, pp. 1819-1836. , COI: 1:CAS:528:DC%2BD28Xht1Kmur3P; Katsev, S., Crowe, S.A., Organic carbon burial efficiencies in sediments: the power law of mineralization revisited (2015) Geology, 43, pp. 607-610. , COI: 1:CAS:528:DC%2BC2MXhtlKrtrnO; Hedges, J.I., Keil, R.G., Sedimentary organic matter preservation: an assessment and speculative synthesis (1995) Mar. Chem., 49, pp. 137-139; Vargas, M., Kashefi, K., Blunt-Harris, E.L., Lovley, D.R., Microbiological evidence for Fe(III) reduction on early Earth (1998) Nature, 395, pp. 65-67. , COI: 1:CAS:528:DyaK1cXmtVSmtbY%3D, PID: 9738498; Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y., Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era (2006) Nature, 440, pp. 516-519. , COI: 1:CAS:528:DC%2BD28Xis1Ols70%3D, PID: 16554816; Thompson, K.J., Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans (2019) Sci. Adv., 5, p. eaav2869. , COI: 1:CAS:528:DC%2BB3cXhtlalu7nF, PID: 31807693; Canfield, D.E., A Mesoproterozoic iron formation (2018) Proc. Natl Acad. Sci. USA, 115, pp. E3895-E3904. , COI: 1:CAS:528:DC%2BC1cXhvVKjtrbO, PID: 29632173; Siahi, M., Insights into the processes and controls on the absolute abundance and distribution of manganese in Precambrian iron formations (2020) Precambr. Res., 350, p. 105878. , COI: 1:CAS:528:DC%2BB3cXhslKjt7vK; Ozaki, K., Tajika, E., Hong, P.K., Nakagawa, Y., Reinhard, C.T., Effects of primitive photosynthesis on Earth’s early climate system (2018) Nat. Geosci., 11, p. 55. , COI: 1:CAS:528:DC%2BC1cXjs1CisA%3D%3D; Friese, A., A simple and inexpensive technique for assessing contamination during drilling operations (2017) Limnol. Oceanogr., 15, pp. 200-211; Viollier, E., Inglett, P.W., Hunter, K., Roychoudhury, A.N., Van Cappellen, P., The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters (2000) Appl. Geochem., 15, pp. 785-790. , COI: 1:CAS:528:DC%2BD3cXhsVWhsLc%3D; Murphy, J., Riley, J.P., A modified single solution method for the determination of phosphate in natural waters (1962) Anal. Chim. Acta, 27, pp. 31-36. , COI: 1:CAS:528:DyaF38XksVyntr8%3D; Glombitza, C., Pedersen, J., Røy, H., Jørgensen, B.B., Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry (2014) Limnol. Oceanogr., 12, pp. 455-468. , COI: 1:CAS:528:DC%2BC2cXitFWgurnL; Thamdrup, B., Fossing, H., Jørgensen, B.B., Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark (1994) Geochim. Cosmochim. Acta, 58, pp. 5115-5129. , COI: 1:CAS:528:DyaK2MXislWnsbY%3D; Jørgensen, B.B., A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments 1. Measurement with radiotracer techniques (1978) Geomicrobiol. J., 1, pp. 11-27; Kallmeyer, J., Ferdelman, T.G., Weber, A., Fossing, H., Jørgensen, B.B., A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements (2004) Limnol. Oceanogr., 2, pp. 171-180; Wang, G., Spivack, A.J., Rutherford, S., Manor, U., D’Hondt, S., Quantification of co-occurring reaction rates in deep subseafloor sediments (2008) Geochim. Cosmochim. Acta, 72, pp. 3479-3488. , COI: 1:CAS:528:DC%2BD1cXotFarsLc%3D

Indexed by Scopus

Leave a Comment