One-step synthesis of nitrogen-grafted copper-gallic acid for enhanced methylene blue removal

Santoso S.P., Bundjaja V., Angkawijaya A.E., Gunarto C., Go A.W., Yuliana M., Tran-Nguyen P.L., Hsieh C.-W., Ju Y.-H.

Department of Chemical Engineering, Widya Mandala Catholic University Surabaya, Kalijudan 37, Surabaya, 60114, Indonesia; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei, 10607, Taiwan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei, 10607, Taiwan; Department of Mechanical Engineering, Can Tho University, 3-2 Street, Can Tho City, Viet Nam; Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung City, 40227, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei City, 10607, Taiwan


Nitrogen-grafting through the addition of glycine (Gly) was performed on a metal- phenolic network (MPN) of copper (Cu2+) and gallic acid (GA) to increase its adsorption capacity. Herein, we reported a one-step synthesis method of MPN, which was developed according to the metal–ligand complexation principle. The nitrogen grafted CuGA (Ng-CuGA) MPN was obtained by reacting Cu2+, GA, and Gly in an aqueous solution at a molar ratio of 1:1:1 and a pH of 8. Several physicochemical measurements, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), and thermal gravimetry analysis (TGA), were done on Ng-CuGA to elucidate its characteristics. The analysis revealed that the Ng-CuGA has non-uniform spherical shaped morphology with a pore volume of 0.56 cc/g, a pore size of 23.25 nm, and thermal stability up to 205 °C. The applicational potential of the Ng-CuGA was determined based on its adsorption capacity against methylene blue (MB). The Ng-CuGA was able to adsorb 190.81 mg MB per g adsorbent at a pH of 6 and temperature of 30 °C, which is 1.53 times higher than the non-grafted CuGA. Detailed assessment of Ng-CuGA adsorption properties revealed their pH- and temperature-dependent nature. The adsorption capacity and affinity were found to decrease at a higher temperature, demonstrating the exothermic adsorption behavior. © 2021, The Author(s).


Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 12021, Page – , Page Count

Journal Link:

doi: 10.1038/s41598-021-91484-w

Issn: 20452322

Type: All Open Access, Gold, Green


Kirchon, A., Feng, L., Drake, H.F., Joseph, E.A., Zhou, H.-C., From fundamentals to applications: a toolbox for robust and multifunctional MOF materials (2018) Chem. Soc. Rev., 47, pp. 8611-8638. , COI: 1:CAS:528:DC%2BC1cXhslOltr7E, PID: 30234863; Ko, M.-P., Huang, C.-J., A versatile approach to antimicrobial coatings via metal-phenolic networks (2020) Colloids Surf. B. Biointerfaces, 187, p. 110771. , COI: 1:CAS:528:DC%2BB3cXltlOitQ%3D%3D, PID: 31911040; Ejima, H., One-step assembly of coordination complexes for versatile film and particle engineering (2013) Science, 341, pp. 154-157. , COI: 1:CAS:528:DC%2BC3sXhtVOku77F, PID: 23846899; Zeng, T., Zhang, X., Guo, Y., Niu, H., Cai, Y., Enhanced catalytic application of Au@polyphenol-metal nanocomposites synthesized by a facile and green method (2014) J. Mater. Chem. A, 2, pp. 14807-14811. , COI: 1:CAS:528:DC%2BC2cXhtFGjsr3F; Ju, Y., Engineered metal-phenolic capsules show tunable targeted delivery to cancer cells (2016) Biomacromol, 17, pp. 2268-2276. , COI: 1:CAS:528:DC%2BC28XovVegsr0%3D; Shen, G., Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy (2016) ACS Nano, 10, pp. 5720-5729. , COI: 1:CAS:528:DC%2BC28Xos1Srs70%3D, PID: 27223166; Hu, Z., Berry, R.M., Pelton, R., Cranston, E.D., One-pot water-based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols (2017) ACS Sustain. Chem. Eng., 5, pp. 5018-5026. , COI: 1:CAS:528:DC%2BC2sXmsVaitb0%3D; Li, W., Superhydrophobic metal-organic framework nanocoating induced by metal-phenolic networks for oily water treatment (2020) ACS Sustain. Chem. Eng., 8, pp. 1831-1839. , COI: 1:CAS:528:DC%2BB3cXmsVWjtA%3D%3D; Luo, W., Engineering robust metal–phenolic network membranes for uranium extraction from seawater (2019) Energy Environ. Sci., 12, pp. 607-614. , COI: 1:CAS:528:DC%2BC1cXhvFKjsL7P; Dai, Q., Advancing metal-phenolic networks for visual information storage (2019) ACS App. Mater. Interfaces, 11, pp. 29305-29311. , COI: 1:CAS:528:DC%2BC1MXhsVSqtL3N; Pan, S., Modular assembly of host-guest metal–phenolic networks using macrocyclic building blocks (2020) Angew. Chem. Int. Ed., 59, pp. 275-280. , COI: 1:CAS:528:DC%2BC1MXitFGqsb%2FJ; Zhong, Q.-Z., Spray assembly of metal-phenolic networks: formation, growth, and applications (2018) ACS App. Mater. Interfaces, 10, pp. 33721-33729. , COI: 1:CAS:528:DC%2BC1cXhslGlsLnE; Yun, G., Synthesis of metal nanoparticles in metal-phenolic networks: catalytic and antimicrobial applications of coated textiles (2018) Adv. Healthc. Mater., 7, p. 1700934. , COI: 1:CAS:528:DC%2BC2sXhs1eltLbF; Rahim, M.A., Self-assembly of a metal-phenolic sorbent for broad-spectrum metal sequestration (2020) ACS App. Mater. Interfaces, 12, pp. 3746-3754. , COI: 1:CAS:528:DC%2BB3cXktVehtg%3D%3D; Wang, J., Adsorptive separation of acetylene from ethylene in isostructural gallate-based metal-organic frameworks (2019) Chem. Eur. J, 25, pp. 15516-15524. , COI: 1:CAS:528:DC%2BC1MXitVyhtrbI, PID: 31469453; Wang, Z., Zou, Y., Li, Y., Cheng, Y., Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics (2020) Small, 16, p. 1907042. , COI: 1:CAS:528:DC%2BB3cXlslKgtr8%3D; Ejima, H., Richardson, J.J., Caruso, F., Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces (2017) Nano Today, 12, pp. 136-148. , COI: 1:CAS:528:DC%2BC2sXhtVent78%3D; Guo, J., Influence of ionic strength on the deposition of metal-phenolic networks (2017) Langmuir, 33, pp. 10616-10622. , COI: 1:CAS:528:DC%2BC2sXhsFGms7nM, PID: 28953397; Cherepanov, P.V., Electrochemical behavior and redox-dependent disassembly of gallic acid/feiii metal-phenolic networks (2018) ACS App. Mater. Interfaces, 10, pp. 5828-5834. , COI: 1:CAS:528:DC%2BC1cXhvVWks7k%3D; Boyd, E.M., Bereczky, K., Godi, I., The acute toxicity of tannic acid administered intragastrically (1965) Can. Med. Assoc. J., 92, pp. 1292-1297. , COI: 1:CAS:528:DyaF2MXksVWrur8%3D, PID: 14291458; Vaillancourt, D.E., Schonfeld, D., Kwak, Y., Bohnen, N.I., Seidler, R., Dopamine overdose hypothesis: evidence and clinical implications (2013) Mov. Disord., 28, pp. 1920-1929. , COI: 1:CAS:528:DC%2BC3sXhvV2mtLjI, PID: 24123087; Azhar, B., Aqueous synthesis of highly adsorptive copper-gallic acid metal-organic framework (2020) Sci. Rep., 10, p. 19212. , COI: 1:CAS:528:DC%2BB3cXit12hs7rF, PID: 33154425; Bibi, R., Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks (2017) J. Chem. Eng. Data, 62, pp. 1615-1622. , COI: 1:CAS:528:DC%2BC2sXmt1Kqsbc%3D; Guo, Z., Zhang, J., Liu, H., Kang, Y., Development of a nitrogen-functionalized carbon adsorbent derived from biomass waste by diammonium hydrogen phosphate activation for Cr(VI) removal (2017) Powder Technol., 318, pp. 459-464. , COI: 1:CAS:528:DC%2BC2sXhtVeru77E; Kundu, S., Chowdhury, I.H., Naskar, M.K., Nitrogen-doped nanoporous carbon nanospheroids for selective dye adsorption and PB(II) ion removal from waste water (2018) ACS Omega, 3, pp. 9888-9898. , COI: 1:CAS:528:DC%2BC1cXhsFOhtLjE, PID: 31459117; Geng, J., 3D nitrogen-doped graphene gels as robust and sustainable adsorbents for dyes (2017) New J. Chem., 41, pp. 15447-15457. , COI: 1:CAS:528:DC%2BC2sXhslygu7%2FM; Ouyang, B., Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance (2016) J. Mater. Chem. A, 4, pp. 17801-17808. , COI: 1:CAS:528:DC%2BC28XhslSltbbE; Straten, J.W., Nitrogen-functionalized hydrothermal carbon materials by using urotropine as the nitrogen precursor (2018) Chem. Eur. J, 24, pp. 12298-12317. , COI: 1:CAS:528:DC%2BC1cXovVClt78%3D, PID: 29575186; Sanjeeva Rao, K., Senthilnathan, J., Ting, J.-M., Yoshimura, M., Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications (2014) Nanoscale, 6, pp. 12758-12768. , COI: 1:CAS:528:DC%2BC2cXhsFektLzK, PID: 25219381; Ma, W., One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate (2019) Chem. Eng. J., 356, pp. 1022-1031. , COI: 1:CAS:528:DC%2BC1cXhslOhtb%2FE; Işıkel Şanlı, L., Alkan Gürsel, S., Synthesis and characterization of novel graft copolymers by radiation-induced grafting (2011) J. Appl. Polym. Sci., 120, pp. 2313-2323. , COI: 1:CAS:528:DC%2BC3MXitFegtLw%3D; Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H., Cu(II), Co(II), and Ni(II)–antioxidative phenolate-glycine peptide systems: an insight into its equilibrium solution study (2012) J. Chem. Eng. Data, 57, pp. 3443-3451. , COI: 1:CAS:528:DC%2BC38XhsFGmtLnK; Fazary, A.E., Complex formation between ferric(III), chromium(III), and cupric(II) metal ions and (O, N) and (O, O) donor ligands with biological relevance in aqueous solution (2011) J. Solution Chem., 40, pp. 1965-1986. , COI: 1:CAS:528:DC%2BC3MXhs1CjtLzN; Tardy, B.L., Protein adsorption and coordination-based end-tethering of functional polymers on metal-phenolic network films (2019) Biomacromol, 20, pp. 1421-1428. , COI: 1:CAS:528:DC%2BC1MXjsVKlur4%3D; Angkawijaya, A.E., Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant (2020) J. Hazard. Mater., 399, p. 123130. , COI: 1:CAS:528:DC%2BB3cXhtF2ltbjE, PID: 32937725; Langmuir, I., The constitution and fundamental properties of solids and liquids: part i: solids (1916) J. Am. Chem. Soc., 38, pp. 2221-2295. , COI: 1:CAS:528:DyaC28Xhs1egsQ%3D%3D; Freundlich, H., Of the adsorption of gases: Section II: Kinetics and energetics of gas adsorption: introductory paper to section II (1932) Trans. Faraday Soc., 28, pp. 195-201. , COI: 1:CAS:528:DyaA38XjvVCrsg%3D%3D; Amin, M.T., Alazba, A.A., Shafiq, M., Adsorptive removal of reactive black 5 from wastewater using bentonite clay: isotherms, kinetics and thermodynamics (2015) Sustainability, 7, pp. 15302-15318. , COI: 1:CAS:528:DC%2BC1cXls1Krs7c%3D; Al-Ghouti, M.A., Da’ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: a review (2020) J. Hazard. Mater., 393, p. 122383. , COI: 1:CAS:528:DC%2BB3cXmvFWltb4%3D, PID: 32369889; Saruchi, K.V., Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger (2019) Arab. J. Chem., 12, pp. 316-329. , COI: 1:CAS:528:DC%2BC28XhvFymtr7K; Belhachemi, M., Addoun, F., Comparative adsorption isotherms and modeling of methylene blue onto activated carbons (2011) Appl. Water Sci., 1, pp. 111-117. , COI: 1:CAS:528:DC%2BC3MXhsVGrs77K; Zhou, X., Zhou, X., The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation (2014) Chem. Eng. Commun., 201, pp. 1459-1467. , COI: 1:CAS:528:DC%2BC2cXhtVWgt7nM; Sahmoune, M.N., Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents (2019) Environ. Chem. Lett., 17, pp. 697-704. , COI: 1:CAS:528:DC%2BC1cXhvVOjt7%2FP; Fischer, G., Cao, X., Cox, N., Francis, M., The FT-IR spectra of glycine and glycylglycine zwitterions isolated in alkali halide matrices (2005) Chem. Phys., 313, pp. 39-49. , COI: 1:CAS:528:DC%2BD2MXjtF2ns7Y%3D; Hirun, N., Dokmaisrijan, S., Tantishaiyakul, V., Experimental FTIR and theoretical studies of gallic acid–acetonitrile clusters, Spectrochim (2012) Acta Pt. A: Mol. Biomol. Spectrosc., 86, pp. 93-100. , COI: 1:CAS:528:DC%2BC3MXhs1Cgu7rL; Virtanen, T., Analysis of membrane fouling by Brunauer-Emmet-Teller nitrogen adsorption/desorption technique (2020) Sci. Rep., 10, p. 3427. , COI: 1:CAS:528:DC%2BB3cXlvVKms70%3D, PID: 32098983; Iftekhar, S., Ramasamy, D.L., Srivastava, V., Asif, M.B., Sillanpää, M., Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review (2018) Chemosphere, 204, pp. 413-430. , COI: 1:CAS:528:DC%2BC1cXnvVSqs74%3D, PID: 29677649; Moosa, A.A., Ridha, A.M., Kadhim, N.A., Use of biocomposite adsorbents for the removal of methylene blue dye from aqueous solution (2016) Am. J. Mater. Sci., 6, pp. 135-146; Wang, C., Glycine-functionalized reduced graphene oxide for methylene blue removal (2019) Appl. Organomet. Chem., 33; Swan, N.B., Zaini, M.A.A., Adsorption of malachite green and congo red dyes from water: recent progress and future outlook (2019) Ecol. Chem. Eng. S, 26, pp. 119-132. , COI: 1:CAS:528:DC%2BC1MXosF2msL0%3D; Salazar-Rabago, J.J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R., Cerino-Cordova, F.J., Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions (2017) Sustain. Environ. Res., 27, pp. 32-40. , COI: 1:CAS:528:DC%2BC2sXhvFOnsbfE; Giles, C.H., Macewan, T.H., Nakhwa, S.N., Smith, D., 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids (1960) J. Chem. Soc., pp. 3973-3993; Piccin, J.S., Cadaval, T.R.S.A., De Pinto, L.A.A., Dotto, G.L., Adsorption isotherms in liquid phase: experimental, modeling, and interpretations (2017) Adsorption Processes for Water Treatment and Purification, pp. 19-51. , Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE, (eds), Springer International Publishing, Cham; Bartell, F.E., Thomas, T.L., Fu, Y., Thermodynamics of adsorption from solutions: iv: temperature dependence of adsorption (1951) J. Phys. Chem., 55, pp. 1456-1462. , COI: 1:CAS:528:DyaG38Xhs1Oisw%3D%3D; Santoso, S.P., Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture (2019) Cellulose, 26, pp. 3339-3358. , COI: 1:CAS:528:DC%2BC1MXnt1eqsLo%3D; Banerjee, S., Gautam, R.K., Jaiswal, A., Chandra Chattopadhyaya, M., Chandra Sharma, Y., Rapid scavenging of methylene blue dye from a liquid phase by adsorption on alumina nanoparticles (2015) RSC Adv., 5, pp. 14425-14440. , COI: 1:CAS:528:DC%2BC2MXos1ajtg%3D%3D; Nethaji, S., Sivasamy, A., Mandal, A.B., Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass (2013) Int. J. Environ. Sci. Technol., 10, pp. 231-242. , COI: 1:CAS:528:DC%2BC3sXit1GgtrY%3D; Li, Y.H., Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes (2005) Water Res., 39, pp. 605-609. , COI: 1:CAS:528:DC%2BD2MXhtFejs7c%3D, PID: 15707633; Bharathi, K.S., Ramesh, S.T., Removal of dyes using agricultural waste as low-cost adsorbents: a review (2013) Appl. Water Sci., 3, pp. 773-790; Santoso, S.P., Preparation of nanocrystalline cellulose-montmorillonite composite via thermal radiation for liquid-phase adsorption (2017) J. Mol. Liq., 233, pp. 29-37. , COI: 1:CAS:528:DC%2BC2sXksVCisL8%3D; Kumar, P.S., Vincent, C., Kirthika, K., Kumar, K.S., Kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silversol-coated activated carbon (2010) Braz. J. Chem. Eng., 27, pp. 339-346; Xu, Z., Cai, J.-G., Pan, B.-C., Mathematically modeling fixed-bed adsorption in aqueous systems (2013) J. Zhejiang Univ. Sci. A, 14, pp. 155-176. , COI: 1:CAS:528:DC%2BC3sXksFentrw%3D; Avlonitis, S.A., Poulios, I., Sotiriou, D., Pappas, M., Moutesidis, K., Simulated cotton dye effluents treatment and reuse by nanofiltration (2008) Desalination, 221, pp. 259-267. , COI: 1:CAS:528:DC%2BD1cXnvV2lsQ%3D%3D; Kuang, Y., Zhang, X., Zhou, S., Adsorption of methylene blue in water onto activated carbon by surfactant modification (2020) Water, 12, p. 587; Gorzin, F., Bahri Rasht Abadi, M.M., Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies (2017) Adsorp. Sci. Technol., 36, pp. 149-169. , COI: 1:CAS:528:DC%2BC1cXivFClu74%3D; Paiman, S.H., Functionalization effect of Fe-type MOF for methylene blue adsorption (2020) J. Saudi Chem. Soc., 24, pp. 896-905. , COI: 1:CAS:528:DC%2BB3MXhtVelsLrN; Lin, S., Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution (2014) Microporous Mesoporous Mater., 193, pp. 27-34. , COI: 1:CAS:528:DC%2BC2cXotV2ms7g%3D; Mohammadi, A.A., Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions (2017) Int. J. Environ. Sci. Technol., 14, pp. 1959-1968. , COI: 1:CAS:528:DC%2BC2sXnt1Cmtbk%3D

Indexed by Scopus

Leave a Comment