New Guinean orogenic dynamics and biota evolution revealed using a custom geospatial analysis pipeline

Toussaint E.F.A., White L.T., Shaverdo H., Lam A., Surbakti S., Panjaitan R., Sumoked B., von Rintelen T., Sagata K., Balke M.

Natural History Museum of Geneva, CP 6434, Geneva 6, 1211, Switzerland; GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; Naturhistorisches Museum Wien, Burgring 7, Vienna, 1010, Austria; SNSB‐Zoologische Staatssammlung München, Munich, Germany; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States; Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, United States; Department of Biology, Universitas Cenderawasih (UNCEN), Waena, Papua, Indonesia; Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Jalan Gunung Salju Amban, Manokwari, West Papua 98314, Indonesia; Walian 2, Tomohon Selatan, N Sulawesi 95439, Indonesia; Museum Für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, 10115, Germany; University of Papua New Guinea, Port Moresby, Papua New Guinea; Department of Entomology, SNSB‐Zoologische Staatssammlung München, Münchhausenstrasse 21, Munich, 81247, Germany


Background: The New Guinean archipelago has been shaped by millions of years of plate tectonic activity combined with long-term fluctuations in climate and sea level. These processes combined with New Guinea’s location at the tectonic junction between the Australian and Pacific plates are inherently linked to the evolution of its rich endemic biota. With the advent of molecular phylogenetics and an increasing amount of geological data, the field of New Guinean biogeography begins to be reinvigorated. Results: We inferred a comprehensive dated molecular phylogeny of endemic diving beetles to test historical hypotheses pertaining to the evolution of the New Guinean biota. We used geospatial analysis techniques to compare our phylogenetic results with a newly developed geological terrane map of New Guinea as well as the altitudinal and geographic range of species ( Our divergence time estimations indicate a crown age (early diversification) for New Guinea Exocelina beetles in the mid-Miocene ca. 17 Ma, when the New Guinean orogeny was at an early stage. Geographic and geological ancestral state reconstructions suggest an origin of Exocelina ancestors on the eastern part of the New Guinean central range on basement rocks (with a shared affinity with the Australian Plate). Our results do not support the hypothesis of ancestors migrating to the northern margin of the Australian Plate from Pacific terranes that incrementally accreted to New Guinea over time. However, our analyses support to some extent a scenario in which Exocelina ancestors would have been able to colonize back and forth between the amalgamated Australian and Pacific terranes from the Miocene onwards. Our reconstructions also do not support an origin on ultramafic or ophiolite rocks that have been colonized much later in the evolution of the radiation. Macroevolutionary analyses do not support the hypothesis of heterogeneous diversification rates throughout the evolution of this radiation, suggesting instead a continuous slowdown in speciation. Conclusions: Overall, our geospatial analysis approach to investigate the links between the location and evolution of New Guinea’s biota with the underlying geology sheds a new light on the patterns and processes of lineage diversification in this exceedingly diverse region of the planet. © 2021, The Author(s).

Beetle evolution; Dytiscidae paleogeography; Foja Gauttier Mountains; Island biogeography; Melanesia; Ultramafic rocks; Water beetle phylogenetics


BMC Ecology and Evolution

Publisher: BioMed Central Ltd

Volume 21, Issue 1, Art No 51, Page – , Page Count

Journal Link:

doi: 10.1186/s12862-021-01764-2

Issn: 14726785

Type: All Open Access, Gold, Green


Gressitt, J.L., (1982) Biogeography and ecology of New Guinea, 1. , Dr W. Junk, London; Baldwin, S.L., Fitzgerald, P.G., Webb, L.E., Tectonics of the New Guinea region (2012) Annu Rev Earth Planet Sci, 40 (1), pp. 495-520. , COI: 1:CAS:528:DC%2BC38XovFSlt74%3D; Davies, H.L., The geology of New Guinea—the cordilleran margin of the Australian continent (2012) Episodes, 35 (1), pp. 87-101; Hill, K., Gleadow, A., Uplift and thermal history of the Papuan Fold Belt, Papua New Guinea: apatite fission track analysis (1989) Aust J Earth Sci, 36 (4), pp. 515-539; Weiland, R.J., Cloos, M., Pliocene-Pleistocene asymmetric unroofing of the Irian fold belt, Irian Jaya, Indonesia: apatite fission-track thermochronology (1996) Geol Soc Am Bull, 108 (11), pp. 1438-1449; Hill, K.C., Hall, R., Mesozoic-Cenozoic evolution of Australia’s New Guinea margin in a west Pacific contex (2003) Evolution and dynamics of the Australian Plate, pp. 265-289. , Hillis RR, Müller RD, (eds), Geological Society of America, Boulder; Gold, D.P., White, L.T., Gunawan, I., BouDagher-Fadel, M.K., Relative sea-level change in western New Guinea recorded by regional biostratigraphic data (2017) Mar Pet Geol, 86, pp. 1133-1158; Crowhurst, P., Maas, R., Hill, K., Foster, D., Fanning, C., Isotopic constraints on crustal architecture and Permo-Triassic tectonics in New Guinea: possible links with eastern Australia (2004) Aust J Earth Sci, 51 (1), pp. 107-122. , COI: 1:CAS:528:DC%2BD2cXjtlKis70%3D; Jost, B.M., Webb, M., White, L.T., The Mesozoic and Palaeozoic granitoids of north-western New Guinea (2018) Lithos, 312, pp. 223-243. , COI: 1:CAS:528:DC%2BC1cXptFSksL4%3D; Webb, M., White, L.T., Age and nature of Triassic magmatism in the Netoni Intrusive Complex, West Papua, Indonesia (2016) J Asian Earth Sci, 132, pp. 58-74; Holm, R.J., Rosenbaum, G., Richards, S.W., Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: microplate tectonics in a convergent plate boundary setting (2016) Earth Sci Rev, 156, pp. 66-81; Holm, R.J., Spandler, C., Richards, S.W., Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea (2015) Gondwana Res, 28 (3), pp. 1117-1136. , COI: 1:CAS:528:DC%2BC2cXhslCgs7jO; White, L.T., Hall, R., Gunawan, I., Kohn, B., Tectonic mode switches recorded at the northern edge of the Australian Plate during the Pliocene and Pleistocene (2019) Tectonics, 38 (1), pp. 281-306; Webb, M., White, L.T., Jost, B.M., Tiranda, H., BouDagher-Fadel, M., The history of Cenozoic magmatism and collision in NW New Guinea-New insights into the tectonic evolution of the northernmost margin of the Australian Plate (2020) Gondwana Res, 82, pp. 12-38. , COI: 1:CAS:528:DC%2BB3cXisF2mt7Y%3D; Webb, M., White, L.T., Jost, B.M., Tiranda, H., The Tamrau Block of NW New Guinea records late Miocene-Pliocene collision at the northern tip of the Australian Plate (2019) J Asian Earth Sci, 179, pp. 238-260; Sutriyono, E., O’sullivan, P.B., Hill, K.C., Thermochronology and tectonics of the Bird’s Head Region, Irian Jaya: Apatite fission track constraints (1997) International Conference on Petroleum Systems of SE Asia and Australasia, pp. 285-299; Kendrick, R.D., Hill, K.C., Parris, K., Saefudin, I., O’sullivan, P.B., Timing and style of Neogene regional deformation in the Irian Jaya Fold Belt, Indonesia (1995) Proceedings Indonesian Petroleum Association, pp. 249-262; Hill, K., Raza, A., Arc-continent collision in Papua Guinea: constraints from fission track thermochronology (1999) Tectonics, 18, pp. 950-966; Bailly, V., Pubellier, M., Ringenbach, J.-C., De Sigoyer, J., Sapin, F., Deformation zone ‘jumps’ in a young convergent setting; the Lengguru fold-and-thrust belt, New Guinea Island (2009) Lithos, 113 (1-2), pp. 306-317. , COI: 1:CAS:528:DC%2BD1MXhtlekurfE; François, C., de Sigoyer, J., Pubellier, M., Bailly, V., Cocherie, A., Ringenbach, J.-C., Short-lived subduction and exhumation in Western Papua (Wandamen peninsula): co-existence of HP and HT metamorphic rocks in a young geodynamic setting (2016) Lithos, 266, pp. 44-63. , COI: 1:CAS:528:DC%2BC28Xhs1alsrrJ; Lam, A.W., Gueuning, M., Kindler, C., Van Dam, M., Alvarez, N., Panjaitan, R., Shaverdo, H., Balke, M., Phylogeography and population genomics of a lotic water beetle across a complex tropical landscape (2018) Mol Ecol, 27 (16), pp. 3346-3356; Bocek, M., Bocak, L., The origins and dispersal history of the trichaline net-winged beetles in Southeast Asia, Wallacea, New Guinea and Australia (2019) Zool J Linn Soc, 185 (4), pp. 1079-1094; Cozzarolo, C.-S., Balke, M., Buerki, S., Arrigo, N., Pitteloud, C., Gueuning, M., Salamin, N., Alvarez, N., Biogeography and ecological diversification of a Mayfly Clade in New Guinea (2019) Front Ecol Evol, 7, p. 233; Georges, A., Zhang, X., Unmack, P., Reid, B.N., Le, M., McCord, W.P., Contemporary genetic structure of an endemic freshwater turtle reflects Miocene orogenesis of New Guinea (2014) Biol J Lin Soc, 111 (1), pp. 192-208; Irestedt, M., Batalha-Filho, H., Roselaar, C.S., Christidis, L., Ericson, P.G.P., Contrasting phylogeographic signatures in two Australo-Papuan bowerbird species complexes (Aves: Ailuroedus) (2016) Zool Scr, 45 (4), pp. 365-379; Janda, M., Matos-Maraví, P., Borovanska, M., Zima, J., Youngerman, E., Pierce, N.E., Phylogeny and population genetic structure of the ant genus Acropyga (Hymenoptera: Formicidae) in Papua New Guinea (2016) Invertebr Syst, 30 (1), pp. 28-40; Jønsson, K.A., Fabre, P.H., Ricklefs, R.E., Fjeldsa, J., Major global radiation of corvoid birds originated in the proto-Papuan archipelago (2011) Proc Natl Acad Sci USA, 108 (6), pp. 2328-2333. , PID: 21262814; Out of Australia: the Argiolestidae reveal the Melanesian Arc System and East Papua Composite Terrane as possible ancient dispersal routes to the Indo-Australian Archipelago (Odonata: Argiolestidae) (2018) Int J Odonatol, 21 (1), pp. 1-14; Moyle, R.G., Oliveros, C.H., Andersen, M.J., Hosner, P.A., Benz, B.W., Manthey, J.D., Travers, S.L., Faircloth, B.C., Tectonic collision and uplift of Wallacea triggered the global songbird radiation (2016) Nat Commun, 7, p. 12709. , PID: 27575437; Natusch, D.J., Esquerre, D., Lyons, J.A., Hamidy, A., Lemmon, A.R., Lemmon, E.M., Riyanto, A., Donnellan, S., Species delimitation and systematics of the green pythons (Morelia viridis complex) of Melanesia and Australia (2020) Mol Phylogenet Evol, 142, p. 106640. , PID: 31605811; Oliver, L.A., Rittmeyer, E.N., Kraus, F., Richards, S.J., Austin, C.C., Phylogeny and phylogeography of Mantophryne (Anura: Microhylidae) reveals cryptic diversity in New Guinea (2013) Mol Phylogenet Evol, 67 (3), pp. 600-607. , PID: 23499614; Oliver, P.M., Iannella, A., Richards, S.J., Lee, M.S., Mountain colonisation, miniaturisation and ecological evolution in a radiation of direct-developing New Guinea Frogs (Choerophryne, Microhylidae) (2017) PeerJ, 5. , PID: 28382230; Tallowin, O.J.S., Tamar, K., Meiri, S., Allison, A., Kraus, F., Richards, S.J., Oliver, P.M., Early insularity and subsequent mountain uplift were complementary drivers of diversification in a Melanesian lizard radiation (Gekkonidae: Cyrtodactylus) (2018) Mol Phylogenet Evol, 125, pp. 29-39. , PID: 29551525; Unmack, P.J., Allen, G.R., Johnson, J.B., Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea (2013) Mol Phylogenet Evol, 67 (1), pp. 15-27. , PID: 23313459; Liebherr, J.K., Revision of Dobodura Darlington (Coleoptera: Carabidae: Odacanthini): diversification on accreted terranes of northern New Guinea (2017) Tijdschrift voor Entomologie, 160 (1), pp. 1-23; Eldridge, M.D., Potter, S., Helgen, K.M., Sinaga, M.H., Aplin, K.P., Flannery, T.F., Johnson, R.N., Phylogenetic analysis of the tree-kangaroos (Dendrolagus) reveals multiple divergent lineages within New Guinea (2018) Mol Phylogenet Evol, 127, pp. 589-599. , PID: 29807156; Todd, E.V., Blair, D., Georges, A., Lukoschek, V., Jerry, D.R., Gillman, L.N., A biogeographical history and timeline for the evolution of Australian snapping turtles (Elseya: Chelidae) in Australia and New Guinea (2014) J Biogeogr, 41 (5), pp. 905-918; Cibois, A., Thibault, J.C., Bonillo, C., Filardi, C.E., Watling, D., Pasquet, E., Phylogeny and biogeography of the fruit doves (Aves: Columbidae) (2014) Mol Phylogenet Evol, 70, pp. 442-453. , PID: 24012584; Heads, M., Birds of paradise, vicariance biogeography and terrane tectonics in New Guinea (2002) J Biogeogr, 29 (2), pp. 261-283; Schweizer, M., Wright, T.F., Penalba, J.V., Schirtzinger, E.E., Joseph, L., Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes) (2015) Mol Phylogenet Evol, 90, pp. 34-48. , PID: 25929786; Toussaint, E.F.A., Hall, R., Monaghan, M.T., Sagata, K., Ibalim, S., Shaverdo, H.V., Vogler, A.P., Balke, M., The towering orogeny of New Guinea as a trigger for arthropod megadiversity (2014) Nat Commun, 5, p. 4001. , COI: 1:CAS:528:DC%2BC2cXitVWgt7%2FE, PID: 24874774; Shee, Z.Q., Frodin, D.G., Camara-Leret, R., Pokorny, L., Reconstructing the complex evolutionary history of the Papuasian Schefflera radiation through herbariomics (2020) Front Plant Sci, 11, p. 258. , PID: 32265950; Aggerbeck, M., Fjeldså, J., Christidis, L., Fabre, P.H., Jønsson, K.A., Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin (2014) Mol Phylogenet Evol, 70, pp. 272-285. , PID: 24125832; Oliver, P.M., Brown, R.M., Kraus, F., Rittmeyer, E., Travers, S.L., Siler, C.D., Lizards of the lost arcs: mid-Cenozoic diversification, persistence and ecological marginalization in the West Pacific (2018) Proc R Soc B; Rivera, J.A., Kraus, F., Allison, A., Butler, M.A., Molecular phylogenetics and dating of the problematic New Guinea microhylid frogs (Amphibia: Anura) reveals elevated speciation rates and need for taxonomic reclassification (2017) Mol Phylogenet Evol, 112, pp. 1-11. , PID: 28412536; Toussaint, E.F.A., Hendrich, L., Shaverdo, H., Balke, M., Mosaic patterns of diversification dynamics following the colonization of Melanesian islands (2015) Sci Rep, 5, p. 16016. , COI: 1:CAS:528:DC%2BC2MXhslOns7nP, PID: 26526041; Bruxaux, J., Gabrielli, M., Ashari, H., Prys-Jones, R., Joseph, L., Milá, B., Besnard, G., Thébaud, C., Recovering the evolutionary history of crowned pigeons (Columbidae: Goura): implications for the biogeography and conservation of New Guinean lowland birds (2018) Mol Phylogenet Evol, 120, pp. 248-258. , PID: 29199106; Tallowin, O.J.S., Meiri, S., Donnellan, S.C., Richards, S.J., Austin, C.C., Oliver, P.M., The other side of the Sahulian coin: biogeography and evolution of Melanesian forest dragons (Agamidae) (2020) Biol J Lin Soc, 129 (1), pp. 99-113; De Boer, A., Duffels, J., Historical biogeography of the cicadas of Wallacea, New Guinea and the West Pacific: a geotectonic explanation (1996) Palaeogeogr Palaeoclimatol Palaeoecol, 124 (1-2), pp. 153-177; Polhemus, D., Polhemus, J.T., Two new genera and thirty new species of Microveliinae (Heteroptera: Veliidae) from the East Papua Composite Terrane, far eastern New Guinea (2004) Tijdschrift voor Entomologie, 147 (2), pp. 113-189; Polhemus, D.A., Polhemus, J.T., Assembling New Guinea: 40 million years of island arc accretion as indicated by the distributions of aquatic Heteroptera (Insecta) (1998) Biogeography and geological evolution of SE Asia, pp. 327-340. , Hall R, Holloway JD, (eds), Backhuys, Leiden; Heads, M., Regional patterns of biodiversity in New Guinea animals (2002) J Biogeogr, 29, pp. 285-294; Davies, H., Jaques, A., Emplacement of ophiolite in Papua New Guinea (1984) Geol Soc Lond Spec Publ, 13 (1), pp. 341-349; Charlton, T., Hall, R., Partoyo, E., The geology and tectonic evolution of Waigeo Island, NE Indonesia (1991) J SE Asian Earth Sci, 6 (3-4), pp. 289-297; Geological results of petroleum exploration in Western Papua, 1937–1961 (1961) J Geol Soc Aust, 8 (1), pp. 1-133; Davies, H., Winn, R., Kengemar, P., Evolution of the Papuan Basin-a view from the orogen Third PNG Petroleum Convention: 1996; Port Moresby Papua New Guinea (PNG) Petroleum Convention Proceedings, pp. 1-10; Pieters, P., Pigram, C., Trail, D., Dow, D., Ratman, N., Sukamto, R., The stratigraphy of western Irian Jaya (1983) Bull Geol Res Dev Centre, 8, pp. 14-48; Heads, M., Passive uplift of plant and animal populations during mountain-building (2019) Cladistics, 35 (5), pp. 550-572; Balke, M., Wewalka, G., Alarie, Y., Ribera, I., Molecular phylogeny of Pacific Island Colymbetinae: radiation of New Caledonian and Fijian species (Coleoptera, Dytiscidae) (2007) Zoolog Scr, 36 (2), pp. 173-200; Lam, A., Toussaint, E.F.A., Kindler, C., Van Dam, M.H., Panjaitan, R., Roderick, G.K., Balke, M., Stream flow alone does not predict population structure of diving beetles across complex tropical landscapes (2018) Mol Ecol, 27 (17), pp. 3541-3554. , PID: 30030868; Shaverdo, H., Surbakti, S., Warikar, E.L., Sagata, K., Balke, M., Nine new species groups, 15 new species, and one new subspecies of New Guinea diving beetles of the genus Exocelina Broun, 1886 (Coleoptera, Dytiscidae, Copelatinae) (2019) Zookeys, 878, pp. 73-143. , PID: 31632177; Shaverdo, H., Balke, M., A new species of the Exocelina ekari group and new faunistic data on 12 species of Exocelina BROUN, 1886 from New Guinea (2019) Koleopterologische Rundschau, 89, pp. 1-10; Balke, M., Ribera, I., A subterranean species of Exocelina diving beetle from the Malay Peninsula filling a 4,000 km distribution gap between Melanesia and southern China (2020) Subterr Biol, 34, pp. 25-37; Shaverdo, H., Panjaitan, R., Balke, M., A new, widely distributed species of the Exocelina ekari-group from West Papua (Coleoptera, Dytiscidae, Copelatinae) (2016) Zookeys, 554, pp. 69-85; Balke, M., Ribera, I., Vogler, A.P., MtDNA phylogeny and biogeography of Copelatinae, a highly diverse group of tropical diving beetles (Dytiscidae) (2004) Mol Phylogenet Evol, 32 (3), pp. 866-880. , COI: 1:CAS:528:DC%2BD2cXmt1Cntrg%3D, PID: 15288062; Désamore, A., Laenen, B., Miller, K.B., Bergsten, J., Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae) (2018) Mol Ecol, 27 (4), pp. 979-993. , PID: 29334415; Louca, S., Pennell, M.W., Extant timetrees are consistent with a myriad of diversification histories (2020) Nature, 580 (7804), pp. 502-505. , COI: 1:CAS:528:DC%2BB3cXntFOrsLY%3D, PID: 32322065; Duffels, J., Turner, H., Cladistic analysis and biogeography of the cicadas of the Indo-Pacific subtribe Cosmopsaltriina (Hemiptera: Cicadoidea: Cicadidae) (2002) Syst Entomol, 27 (2), pp. 235-261; Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.O., Whittaker, R.J., Building mountain biodiversity: geological and evolutionary processes (2019) Science, 365 (6458), pp. 1114-1119. , COI: 1:CAS:528:DC%2BC1MXhslGktr%2FJ, PID: 31515384; Espeland, M., Johanson, K.A., Hovmöller, R., Early Xanthochorema (Trichoptera, Insecta) radiations in New Caledonia originated on ultrabasic rocks (2008) Mol Phylogenet Evol, 48 (3), pp. 904-917. , COI: 1:CAS:528:DC%2BD1cXhtVyntL3J, PID: 18620067; Isnard, S., L’Huillier, L., Rigault, F., Jaffré, T., How did the ultramafic soils shape the flora of the New Caledonian hotspot? (2016) Plant Soil, 403 (1-2), pp. 53-76. , COI: 1:CAS:528:DC%2BC28XnvFaksLo%3D; Slavenko, A., Tamar, K., Tallowin, O.J.S., Allison, A., Kraus, F., Carranza, S., Meiri, S., Cryptic diversity and non-adaptive radiation of montane New Guinea skinks (Papuascincus; Scincidae) (2020) Mol Phylogenet Evol, 146, p. 106749. , PID: 32014575; Shaverdo, H., Sumoked, B., Balke, M., Descriptions of two new species and one new subspecies from the Exocelina okbapensis-group, and notes on the E. aipo-group (Coleoptera, Dytiscidae, Copelatinae) (2017) ZooKeys, 715, pp. 17-37; Toussaint, E.F.A., Sagata, K., Surbakti, S., Hendrich, L., Balke, M., Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp (2013) Ecol Evol, 3 (4), pp. 1031-1049. , PID: 23610642; Cloos, M., Sapiie, B., van Ufford, A.Q., Weiland, R.J., Warren, P.Q., McMahon, T.P., Collisional delamination in New Guinea: the geotectonics of subducting slab breakoff (2005) Geol Soc Am Spec Pap, 400, pp. 1-51; Riedel, A., Daawia, D., Balke, M., Deep cox1 divergence and hyperdiversity of Trigonopterus weevils in a New Guinea mountain range (Coleoptera, Curculionidae) (2010) Zoolog Scr, 39 (1), pp. 63-74; Pigram, C.J., Davies, H.L., Terrranes and the accretion history of the New Guinea orogen (1987) BMR J Aust Geol Geophys, 10, pp. 193-211; Monnier, C., Girardeau, J., Pubellier, M., Polvé, M., Permana, H., Bellon, H., Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya, East Indonesia): consequences for the Cenozoic evolution of the north Australian margin (1999) Mineral Petrol, 65 (1-2), pp. 1-28. , COI: 1:CAS:528:DyaK1MXivVKmtLg%3D; Weiland, R., (1999) Emplacement of the Irian Ophiolite and Unroofing of the Ruffaer Metamorphic Belt of Irian Jaya, Indonesia, , PhD thesis. University of Texas at Austin; Daczko, N.R., Caffi, P., Mann, P., Structural evolution of the Dayman dome metamorphic core complex, eastern Papua New Guinea (2011) Bulletin, 123 (11), pp. 2335-2351; Ӧsterle, J., Little, T., Seward, D., Stockli, D., Gamble, J., The petrology, geochronology and tectono-magmatic setting of igneous rocks in the Suckling-Dayman metamorphic core complex, Papua New Guinea (2020) Gondwana Res, 83, pp. 390-414. , COI: 1:CAS:528:DC%2BB3cXhtFSltb%2FJ; van Ufford, A.Q., Cloos, M., Cenozoic tectonics of New Guinea (2005) AAPG Bull, 89 (1), pp. 119-140; Mahoney, L., Mclaren, S., Hill, K., Kohn, B., Gallagher, K., Norvick, M., Late Cretaceous to Oligocene burial and collision in western Papua New Guinea: indications from low-temperature thermochronology and thermal modelling (2019) Tectonophysics, 752, pp. 81-112; Haq, B., Hardenbol, J., Vail, P., The new chronostratigraphic basis of Cenozoic and Mesozoic sea level cycles (1987) Spec Publ Cushman Found Foraminiferal Res, 24, pp. 7-13; Haq, B.U., Cretaceous eustasy revisited (2014) Glob Planet Change, 113, pp. 44-58; Visser, W.A., Hermes, J.J., (1962) Geological Results of the Exploration for Oil in Netherlands New Guinea. S’gravenhage: Staatsdrukkerij-En Uitgeverijbedrijf; Nannotax3 Website, , [www/], International Nannoplankton Association; Bird, P., An updated digital model of plate boundaries (2003) Geochem Geophys Geosyst, 4 (3), pp. 1-52; Amante, C., Eakins, B., ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis (2009) NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 10; Shaverdo, H., Surbakti, S., Sumoked, B., Balke, M., Three new species of Exocelina Broun, 1886 from the southern slopes of the New Guinea Central Range, with introduction of the Exocelina skalei group (Coleoptera, Dytiscidae, Copelatinae) (2020) ZooKeys, 1007, p. 129; Shaverdo, H., Surbakti, S., Sumoked, B., Balke, M., Seven new species of the Exocelina ekari group from New Guinea central and coastal mountains (Coleoptera, Dytiscidae, Copelatinae) (2021) ZooKeys, , in press; Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32 (5), pp. 1792-1797. , COI: 1:CAS:528:DC%2BD2cXisF2ks7w%3D, PID: 15034147; Miller, K.B., Bergsten, J., The phylogeny and classification of predaceous diving beetles (2014) Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae), pp. 49-172. , Springer, Dordrecht; Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies (2015) Mol Biol Evol, 32 (1), pp. 268-274. , COI: 1:CAS:528:DC%2BC2MXivFGltrs%3D, PID: 25371430; Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A., Jermiin, L.S., ModelFinder: fast model selection for accurate phylogenetic estimates (2017) Nat Methods, 14 (6), p. 587. , COI: 1:CAS:528:DC%2BC2sXntFKitbw%3D, PID: 28481363; Minh, B.Q., Nguyen, M.A.T., von Haeseler, A., Ultrafast approximation for phylogenetic bootstrap (2013) Mol Biol Evol, 30 (5), pp. 1188-1195. , COI: 1:CAS:528:DC%2BC3sXlvFWgsb0%3D, PID: 23418397; Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., Vinh, L.S., UFBoot2: improving the ultrafast bootstrap approximation (2018) Mol Biol Evol, 35 (2), pp. 518-522. , COI: 1:CAS:528:DC%2BC1cXitlyjs7rK, PID: 29077904; Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst Biol, 59 (3), pp. 307-321. , COI: 1:CAS:528:DC%2BC3cXks1Kms7s%3D, PID: 20525638; Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 (2018) Virus Evol, 4 (1), p. vey016. , PID: 29942656; Yu, Y., Blair, C., He, X., RASP 4: ancestral state reconstruction tool for multiple genes and characters (2020) Mol Biol Evol, 37 (2), pp. 604-606. , COI: 1:CAS:528:DC%2BB3cXis1egt7zK, PID: 31670774; Baldwin, S.L., Monteleone, B.D., Webb, L.E., Fitzgerald, P.G., Grove, M., Hill, E.J., Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea (2004) Nature, 431 (7006), pp. 263-267. , COI: 1:CAS:528:DC%2BD2cXnsFaiu7w%3D, PID: 15372021; Polhemus, D.A., Allen, G.R., Freshwater biogeography of Papua (2007) Ecology of Papua part 1, 6, pp. 207-245. , Tuttle Publishing, New York; Rabosky, D.L., Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees (2014) PLoS ONE, 9 (2). , PID: 24586858, COI: 1:CAS:528:DC%2BC2cXhsVGqtrbE; Rabosky, D.L., Grundler, M., Anderson, C., Title, P., Shi, J.J., Brown, J.W., Huang, H., Larson, J.G., BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees (2014) Methods Ecol Evol, 5 (7), pp. 701-707; Morlon, H., Lewitus, E., Condamine, F.L., Manceau, M., Clavel, J., Drury, J., RPANDA: an R package for macroevolutionary analyses on phylogenetic trees (2016) Methods Ecol Evol, 7 (5), pp. 589-597; Etienne, R.S., Haegeman, B., Stadler, T., Aze, T., Pearson, P.N., Purvis, A., Phillimore, A.B., Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record (2012) Proc R Soc B, 279 (1732), pp. 1300-1309. , PID: 21993508; Condamine, F.L., Rolland, J., Morlon, H., Assessing the causes of diversification slowdowns: temperature-dependent and diversity-dependent models receive equivalent support (2019) Ecol Lett, 22 (11), pp. 1900-1912. , PID: 31486279

Indexed by Scopus

Leave a Comment