Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation

Johari M.A.F., Mazlan S.A., Nasef M.M., Ubaidillah U., Nordin N.A., Aziz S.A.A., Johari N., Nazmi N.

Engineering Materials and Structures (eMast) ikhoza, Malaysia-Japan, International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia; Advanced Materials Research Group, Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia; Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, J1. Ir. Sutami 36A, Ketingan, Surakarta, Central Java 57126, Indonesia


The widespread use of magnetorheological elastomer (MRE) materials in various applications has yet to be limited due to the fact that there are substantial deficiencies in current experimental and theoretical research on its microstructural durability behavior. In this study, MRE composed of silicon rubber (SR) and 70 wt% of micron-sized carbonyl iron particles (CIP) was prepared and subjected to stress relaxation evaluation by torsional shear load. The microstructure and particle distribution of the obtained MRE was evaluated by a field emission scanning electron microscopy (FESEM). The influence of constant low strain at 0.01% is the continuing concern within the linear viscoelastic (LVE) region of MRE. Stress relaxation plays a significant role in the life cycle of MRE and revealed that storage modulus was reduced by 8.7%, normal force has weakened by 27%, and stress performance was reduced by 6.88% along approximately 84,000 s test duration time. This time scale was the longest ever reported being undertaken in the MRE stress relaxation study. Novel micro-mechanisms that responsible for the depleted performance of MRE was obtained by microstructurally observation using FESEM and in-phase mode of atomic force microscope (AFM). Attempts have been made to correlate strain localization produced by stress relaxation, with molecular deformation in MRE amorphous matrix. Exceptional attention was focused on the development of molecular slippage, disentanglement, microplasticity, microphase separation, and shear bands. The relation between these microstructural phenomena and the viscoelastic properties of MRE was diffusely defined and discussed. The presented MRE is homogeneous with uniform distribution of CIP. The most significant recent developments of systematic correlation between the effects of microstructural deformation and durability performance of MRE under stress relaxation has been observed and evaluated. © 2021, The Author(s).


Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 10936, Page – , Page Count

Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106950484&doi=10.1038%2fs41598-021-90484-0&partnerID=40&md5=d93f27cb232d5c35eb67996ec36ad1ed

doi: 10.1038/s41598-021-90484-0

Issn: 20452322

Type: All Open Access, Gold, Green


Li, W.H., Zhang, X.Z., Du, H., Magnetorheological Elastomers and Their Applications (2013) Advances in Elastomers I: Blends and Interpenetrating Networks, pp. 357-374. , https://doi.org/10.1007/978-3-642-20925-3_12, Visakh, P. M., Thomas, S., Chandra, A. K., Mathew, A. P., Springer Berlin Heidelberg; Qiao, X., Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix (2012) Smart Mater. Struct., 21, p. 115028; Li, W.H., Nakano, M., Fabrication and characterization of PDMS based magnetorheological elastomers (2013) Smart Mater. Struct., 22, p. 055035. , COI: 1:CAS:528:DC%2BC2cXis12rsbk%3D; Xu, L., Zou, A., Fu, J., Yu, M., Bai, J., Development and simulation evaluation of a magnetorheological elastomer isolator for transformer vibration control (2018) 2018 Chinese Control and Decision Conference (CCDC), 23, pp. 2600-2604. , in, vol., IEEE; Prabhakar, R., (2013) Marur, , U.S Patent 20130087985A1; Rodenbeck, P.D., (2012), U.S Patent 008176958B2; Ubaidillah, S.J., Purwanto, A., Mazlan, S.A., Recent progress on magnetorheological solids: materials, fabrication, testing, and applications (2015) Adv. Eng. Mater., 17, pp. 563-597. , COI: 1:CAS:528:DC%2BC2MXos1akt78%3D; Durability (2012) Engineering with Rubber Vol. 3Rd Editio 205–257 (Carl Hanser Verlag Gmbh & Co. KG; Faizal Johari, M.A., An overview of durability evaluations of elastomer-based magnetorheological materials (2020) IEEE Access, 8, pp. 134536-134552; Wang, Y., Gong, X., Yang, J., Xuan, S., Improving the dynamic properties of MRE under cyclic loading by incorporating silicon carbide nanoparticles (2014) Ind. Eng. Chem. Res., 53, pp. 3065-3072. , COI: 1:CAS:528:DC%2BC2cXhvVSgtrs%3D; Gorman, D., Murphy, N., Ekins, R., Jerrams, S., The evaluation and implementation of magnetic fields for large strain uniaxial and biaxial cyclic testing of magnetorheological elastomers (2016) Polym. Test., 51, pp. 74-81. , COI: 1:CAS:528:DC%2BC28XitlCrs78%3D; Bastola, A.K., Paudel, M., Li, L., Li, W., Recent progress of magnetorheological elastomers: a review (2020) Smart Mater. Struct., 29, p. 123002. , COI: 1:CAS:528:DC%2BB3cXisV2jtr%2FM; Karrabi, M., Mohammadian-Gezaz, S., The effects of carbon black-based interactions on the linear and non-linear viscoelasticity of uncured and cured SBR compounds (2011) Iran. Polym. J., 20, pp. 15-27. , COI: 1:CAS:528:DC%2BC3MXjsVGltbs%3D; Yu, K., Ge, Q., Qi, H.J., Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers (2014) Nat. Commun., 5, pp. 1-9. , COI: 1:CAS:528:DC%2BC2MXht1GgsLjF; Lu, H., Huang, W.M., On the origin of the Vogel–Fulcher–Tammann law in the thermo-responsive shape memory effect of amorphous polymers (2013) Smart Mater. Struct., 22, p. 105021; Lu, H., Du, S., A phenomenological thermodynamic model for the chemo-responsive shape memory effect in polymers based on Flory-Huggins solution theory (2014) Polym. Chem., 5, pp. 1155-1162. , COI: 1:CAS:528:DC%2BC2cXht1GhsL8%3D; Johari, M.A.F., Shear band formation in magnetorheological elastomer under stress relaxation (2021) Smart Mater. Struct., 30, p. 045015. , COI: 1:CAS:528:DC%2BB3MXpsVCjs7g%3D; Tobolsky, A.V., Stress relaxation studies of the viscoelastic properties of polymers (1956) J. Appl. Phys., 27, pp. 673-685. , COI: 1:CAS:528:DyaG28Xos1Cntw%3D%3D; Abu-Abdeen, M., Single and double-step stress relaxation and constitutive modeling of viscoelastic behavior of swelled and un-swelled natural rubber loaded with carbon black (2010) Mater. Des., 31, pp. 2078-2084. , COI: 1:CAS:528:DC%2BC3cXhtlSltA%3D%3D; Xia, H., Song, M., Zhang, Z., Richardson, M., Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites (2007) J. Appl. Polym. Sci., 103, pp. 2992-3002. , COI: 1:CAS:528:DC%2BD2sXhsVyiurk%3D; Liu, X., Dong, X., Liu, W., Han, C.C., Wang, D., Morphology evolution and dynamic relaxation behavior of solution-polymerized styrene-butadiene rubber/polyisoprene/silica ternary composites influenced by shear (2018) Polymer (Guildf)., 145, pp. 416-425. , COI: 1:CAS:528:DC%2BC1cXps1Cqu74%3D; Schmitt, J.A., Keskkula, H., Short-time stress relaxation and toughness of rubber-modified polystyrene (1960) J. Appl. Polym. Sci., 3, pp. 132-142; Jagla, E.A., Strain localization driven by structural relaxation in sheared amorphous solids (2007) Phys. Rev. E, 76, p. 046119. , COI: 1:STN:280:DC%2BD2snntFOnuw%3D%3D; Qi, S., Yu, M., Fu, J., Zhu, M., Stress relaxation behavior of magnetorheological elastomer: experimental and modeling study (2018) J. Intell. Mater. Syst. Struct., 29, pp. 205-213. , COI: 1:CAS:528:DC%2BC1cXhvVWhsLk%3D; Yu, G.J., Lin, X.G., Guo, F., Modeling and verification of relaxation behavior for magnetorheological elastomers with applied magnetic field (2017) Key Eng. Mater., 730, pp. 527-532; Lai, N.T., Ismail, H., Abdullah, M.K., Shuib, R.K., Optimization of pre-structuring parameters in fabrication of magnetorheological elastomer (2019) Arch. Civ. Mech. Eng., 19, pp. 557-568; Boczkowska, A., Awietjan, S.F., Wroblewski, R., Microstructure–property relationships of urethane magnetorheological elastomers (2007) Smart Mater. Struct., 16, pp. 1924-1930. , COI: 1:CAS:528:DC%2BD2sXhtlGgsL3E; Gong, X.L., Chen, L., Li, J.F., Study of utilizable magnetorheological elastomers (2007) Int. J. Mod. Phys. B, 21, pp. 4875-4882. , COI: 1:CAS:528:DC%2BD2sXhtl2gtLbM; Tian, T.F., Li, W.H., Alici, G., Du, H., Deng, Y.M., Microstructure and magnetorheology of graphite-based MR elastomers (2011) Rheol. Acta, 50, pp. 825-836. , COI: 1:CAS:528:DC%2BC3MXotVCnsLo%3D; Ubaidillah, Swelling, thermal, and shear properties of a waste tire rubber based magnetorheological elastomer (2019) Front. Mater., 6, p. 47; Boczkowska, A., Awietjan, S.F., Wejrzanowski, T., Kurzydłowski, K.J., Image analysis of the microstructure of magnetorheological elastomers (2009) J. Mater. Sci., 44, pp. 3135-3140. , COI: 1:CAS:528:DC%2BD1MXjsl2gurk%3D; Liao, G., Gong, X., Xuan, S., Influence of shear deformation on the normal force of magnetorheological elastomer (2013) Mater. Lett., 106, pp. 270-272. , COI: 1:CAS:528:DC%2BC3sXhtVaqsrvO; Menzel, A.M., Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links (2019) Arch. Appl. Mech., 89, pp. 17-45; Han, Y., Zhang, Z., Faidley, L.E., Hong, W., Microstructure-based modeling of magneto-rheological elastomers (2012) Proceeding of Spie-Behavior and Mechanics of Multifunctional Materials and Composites 2012 (Eds. Goulbourne, N. C. & Ounaies, Z.) Vol., , 8342 83421B; Gent, A.N., Relaxation processes in vulcanized rubber. II. Secondary relaxation due to network breakdown (1962) J. Appl. Polym. Sci., 6, pp. 442-448. , COI: 1:CAS:528:DyaF38Xks12rsLg%3D; Maria, H.J., Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites (2014) Appl. Clay Sci., 87, pp. 120-128. , COI: 1:CAS:528:DC%2BC3sXhvVGmurfF; Valiev, K.K., Minaev, A.Y., Stepanov, G.V., Karnet, Y.N., Yumashev, O.B., Scanning Probe Microscopy of Magnetorheological Elastomers (2019) J. Surf Investig. X-ray, Synchrotron Neutron Tech., 13, pp. 825-827. , COI: 1:CAS:528:DC%2BC1MXitVSjt7fO; Valiev, H.H., Atomic force microscopy and physical-Mechanical properties of new elastomer composites (2016) Mater. Phys. Mech., 26, pp. 45-48. , COI: 1:CAS:528:DC%2BC1cXmsFOrtrg%3D; Iacobescu, G.E., Balasoiu, M., Bica, I., Investigation of surface properties of magnetorheological elastomers by atomic force microscopy (2013) J. Supercond. Nov. Magn., 26, pp. 785-792. , COI: 1:CAS:528:DC%2BC3sXlt1Wnurc%3D; Fuchs, A., Sutrisno, J., Gordaninejad, F., Caglar, M.B., Yanming, L., Surface polymerization of iron particles for magnetorheological elastomers (2010) J. Appl. Polym. Sci., 117, pp. 934-942. , COI: 1:CAS:528:DC%2BC3cXlt1Gntrg%3D; Budrikis, Z., Castellanos, D.F., Sandfeld, S., Zaiser, M., Zapperi, S., Universal features of amorphous plasticity (2017) Nat. Commun., 8, p. 15928. , COI: 1:CAS:528:DC%2BC2sXhtV2qsb3N; Cullity, B.D., (1978) Elements of X-Ray Diffraction, , Addison-Wesley Publishing Compaany Inc; Davis, L.C., Model of magnetorheological elastomers (1999) J. Appl. Phys., 85, pp. 3348-3351. , COI: 1:CAS:528:DyaK1MXhsFWqtLc%3D; Nippon Steel (2000) Nippon Steel Technical Bulletin NS 625 a & B.; Shabdin, M., Material characterizations of Gr-based magnetorheological elastomer for possible sensor applications: rheological and resistivity properties (2019) Materials (Basel)., 12, p. 391. , COI: 1:CAS:528:DC%2BC1MXit1KgsbjL; Walter, B.L., Pelteret, J.-P., Kaschta, J., Schubert, D.W., Steinmann, P., Preparation of magnetorheological elastomers and their slip-free characterization by means of parallel-plate rotational rheometry (2017) Smart Mater. Struct., 26, p. 085004; Agirre-Olabide, I., Berasategui, J., Elejabarrieta, M.J., Bou-Ali, M.M., Characterization of the linear viscoelastic region of magnetorheological elastomers (2014) J. Intell. Mater. Syst. Struct., 25, pp. 2074-2081. , COI: 1:CAS:528:DC%2BC2MXisV2ktA%3D%3D

Indexed by Scopus

Leave a Comment