Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities

Hassanzadeh A., Rahman H.S., Markov A., Endjun J.J., Zekiy A.O., Chartrand M.S., Beheshtkhoo N., Kouhbanani M.A.J., Marofi F., Nikoo M., Jarahian M.

Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq; Tyumen State Medical University, Tyumen, Russian Federation; Medical Faculty, UPN Veteran, Jakarta, Indonesia; Gatot Soebroto Indonesia Army Hospital, Jakarta, Indonesia; Sechenov First Moscow State Medical University, Moscow, Russian Federation; DigiCare Behavioral Research, Casa Grande, AZ, United States; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, 69120, Germany


Abstract

Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30–100 nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer. © 2021, The Author(s).

Cancer; Exosomes; Mesenchymal stem/stromal cells (MSCs); MicroRNAs (miRNAs); Regenerative medicine


Journal

Stem Cell Research and Therapy

Publisher: BioMed Central Ltd

Volume 12, Issue 1, Art No 297, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106736285&doi=10.1186%2fs13287-021-02378-7&partnerID=40&md5=4ddf706140ac445261dae253f9bb7d82

doi: 10.1186/s13287-021-02378-7

Issn: 17576512

Type: All Open Access, Gold, Green


References

Friedenstein, A.J., Chailakhyan, R.K., Latsinik, N.V., Panasyuk, A.F., Keiliss-Borok, I.V., Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo (1974) Transplantation, 17, pp. 331-340. , COI: 1:STN:280:DyaE2c7ks1WmsQ%3D%3D, PID: 4150881; Gang, E.J., Jeong, J.A., Hong, S.H., Hwang, S.H., Kim, S.W., Yang, I.H., Ahn, C., Kim, H., Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood (2004) Stem Cells, 22, pp. 617-624. , PID: 15277707; Maumus, M., Jorgensen, C., Noël, D., Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes (2013) Biochimie, 95, pp. 2229-2234. , COI: 1:CAS:528:DC%2BC3sXotlGgsLk%3D, PID: 23685070; Shariati, A., Nemati, R., Sadeghipour, Y., Yaghoubi, Y., Baghbani, R., Javidi, K., Zamani, M., Hassanzadeh, A., Mesenchymal stromal cells (MSCs) for neurodegenerative disease: aA promising frontier (2020) Eur J Cell Biol, 99, p. 151097. , COI: 1:CAS:528:DC%2BB3cXhtlSht7zF, PID: 32800276; Tavakoli, S., Ghaderi Jafarbeigloo, H.R., Shariati, A., Jahangiryan, A., Jadidi, F., Jadidi Kouhbanani, M.A., Hassanzadeh, A., Naimi, A., Mesenchymal stromal cells; a new horizon in regenerative medicine (2020) J Cell Physiol, 235, pp. 9185-9210. , COI: 1:CAS:528:DC%2BB3cXhtVSjtb%2FK, PID: 32452052; Markov, A., Thangavelu, L., Aravindhan, S., Zekiy, A.O., Jarahian, M., Chartrand, M.S., Pathak, Y., Hassanzadeh, A., Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders (2021) Stem Cell Res Ther, 12, pp. 1-30; Fatima, F., Nawaz, M., Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy (2015) Chinese J Cancer, 34, pp. 1-13; Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S., Ringden, O., Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex (2003) Scand J Immunol, 57, pp. 11-20. , PID: 12542793; Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Deans, R., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo (2002) Exp Hematol, 30, pp. 42-48. , PID: 11823036; Marofi, F., Hassanzadeh, A., Solali, S., Vahedi, G., Mousavi Ardehaie, R., Salarinasab, S., Epigenetic mechanisms are behind the regulation of the key genes associated with the osteoblastic differentiation of the mesenchymal stem cells: The role of zoledronic acid on tuning the epigenetic changes (2019) J Cell Physiol, 234, pp. 15108-15122; Schweizer, M.T., Wang, H., Bivalacqua, T.J., Partin, A.W., Lim, S.J., Chapman, C., Abdallah, R., Karp, J.M., A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer (2019) Stem Cells Transl Med, 8, pp. 441-449. , COI: 1:CAS:528:DC%2BC1MXhsFOjtbbN, PID: 30735000; Xie, C., Yang, Z., Suo, Y., Chen, Q., Wei, D., Weng, X., Gu, Z., Wei, X., Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models (2017) Stem Cells Transl Med, 6, pp. 1120-1131. , COI: 1:CAS:528:DC%2BC2sXhtVGgt7fJ, PID: 28205428; Nasr, M.B., Vergani, A., Avruch, J., Liu, L., Kefaloyianni, E., D’Addio, F., Tezza, S., Valderrama-Vasquez, A., Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site (2015) Acta Diabetol, 52, pp. 917-927. , PID: 25808641; Le Blanc, K., Ringden, O., Mesenchymal stem cells: properties and role in clinical bone marrow transplantation (2006) Curr Opin Immunol, 18, pp. 586-591. , PID: 16879957; Rani, S., Ryan, A.E., Griffin, M.D., Ritter, T., Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications (2015) Mol Ther, 23, pp. 812-823. , COI: 1:CAS:528:DC%2BC2MXmsFShu7c%3D, PID: 25868399; O’Connor, M.L., Xiang, D., Shigdar, S., Macdonald, J., Li, Y., Wang, T., Pu, C., Duan, W., Cancer stem cells: a contentious hypothesis now moving forward (2014) Cancer Lett, 344, pp. 180-187. , PID: 24333726; Zhou, Y., Yamamoto, Y., Xiao, Z., Ochiya, T., The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity (2019) J Clin Med, 8, p. 1025. , COI: 1:CAS:528:DC%2BB3cXjslGnur8%3D; Giebel, B., Kordelas, L., Börger, V., (2017) Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles, Stem cell investigation, 4; Phinney, D.G., Prockop, D.J., Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views (2007) Stem cells, 25, pp. 2896-2902. , PID: 17901396; György, B., Szabó, T.G., Pásztói, M., Pál, Z., Misják, P., Aradi, B., László, V., Kittel, A., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles (2011) Cell Mol Life Sci, 68, pp. 2667-2688. , PID: 21560073; Bjerkvig, R., Tysnes, B.B., Aboody, K.S., Najbauer, J., Terzis, A., The origin of the cancer stem cell: current controversies and new insights (2005) Nat Rev Cancer, 5, pp. 899-904. , COI: 1:CAS:528:DC%2BD2MXht1Wgu73K, PID: 16327766; Togel, F., Weiss, K., Yang, Y., Hu, Z., Zhang, P., Westenfelder, C., Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury (2007) Am J Physiol Renal Physiol, 292, pp. F1626-F1635. , COI: 1:CAS:528:DC%2BD2sXlslSgsrs%3D, PID: 17213465; Lässer, C., Alikhani, V.S., Ekström, K., Eldh, M., Paredes, P.T., Bossios, A., Sjöstrand, M., Valadi, H., Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages (2011) J Transl Med, 9, pp. 1-8; Nawaz, M., Camussi, G., Valadi, H., Nazarenko, I., Ekström, K., Wang, X., Principe, S., Fatima, F., The emerging role of extracellular vesicles as biomarkers for urogenital cancers (2014) Nat Rev Urol, 11, p. 688. , PID: 25403245; Simpson, R.J., Lim, J.W., Moritz, R.L., Mathivanan, S., Exosomes: proteomic insights and diagnostic potential (2009) Expert Rev Proteomics, 6, pp. 267-283. , COI: 1:CAS:528:DC%2BD1MXms12nu7Y%3D, PID: 19489699; Camussi, G., Deregibus, M.-C., Bruno, S., Grange, C., Fonsato, V., Tetta, C., Exosome/microvesicle-mediated epigenetic reprogramming of cells (2011) Am J Cancer Res, 1, p. 98. , PID: 21969178; Nawaz, M., Fatima, F., Zanetti, B.R., de Lima Martins, I., Schiavotelo, N.L., Mendes, N.D., Silvestre, R.N., Neder, L., Microvesicles in gliomas and medulloblastomas: An overview (2014) J Cancer Ther, pp. 182-219; Motavaf, M., Pakravan, K., Babashah, S., Malekvandfard, F., Masoumi, M., Sadeghizadeh, M., Therapeutic application of mesenchymal stem cell-derived exosomes: aA promising cell-free therapeutic strategy in regenerative medicine (2016) Cell Mol Biol, 62, pp. 74-79. , COI: 1:STN:280:DC%2BC2s3jslWqtQ%3D%3D, PID: 27453276; Wu, J., Qu, Z., Fei, Z.W., Wu, J.H., Jiang, C.P., Role of stem cell-derived exosomes in cancer (2017) Oncol Lett, 13, pp. 2855-2866. , COI: 1:CAS:528:DC%2BC1cXhsVyku7fN, PID: 28521391; Klopp, A.H., Gupta, A., Spaeth, E., Andreeff, M., Marini, F., III, Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? (2011) Stem Cells, 29, pp. 11-19. , COI: 1:CAS:528:DC%2BC3MXjvFSltrw%3D, PID: 21280155; Katsuda, T., Kosaka, N., Takeshita, F., Ochiya, T., The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (2013) Proteomics, 13, pp. 1637-1653. , COI: 1:CAS:528:DC%2BC3sXivFymtbo%3D, PID: 23335344; Vakhshiteh, F., Atyabi, F., Ostad, S.N., Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy (2019) Int J Nanomed, 14, p. 2847. , COI: 1:CAS:528:DC%2BC1MXhslKqsLzP; Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Raposo, G., Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles (2013) J Cell Sci, 126, pp. 5553-5565. , COI: 1:CAS:528:DC%2BC2cXhtFyksLY%3D, PID: 24105262; Cocucci, E., Meldolesi, J., Ectosomes and exosomes: shedding the confusion between extracellular vesicles (2015) Trends Cell Biol, 25, pp. 364-372. , COI: 1:CAS:528:DC%2BC2MXitFCqs7c%3D, PID: 25683921; Gurunathan, S., Kang, M.-H., Jeyaraj, M., Qasim, M., Kim, J.-H., Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes (2019) Cells, 8, p. 307. , COI: 1:CAS:528:DC%2BB3cXhvF2htrc%3D; Vlassov, A.V., Magdaleno, S., Setterquist, R., Conrad, R., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials (2012) Biochimica et Biophys Acta (BBA)-Gen Subjects, 1820, pp. 940-948. , COI: 1:CAS:528:DC%2BC38XnslSjt7c%3D; Xunian, Z., Kalluri, R., Biology and therapeutic potential of mesenchymal stem cell-derived exosomes (2020) Cancer Sci, 111, p. 3100. , COI: 1:CAS:528:DC%2BB3cXhsVKrsr%2FI, PID: 32639675; D’Alimonte, I., Lannutti, A., Pipino, C., Di Tomo, P., Pierdomenico, L., Cianci, E., Antonucci, I., Stuppia, L., Wnt signaling behaves as a “master regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells (2013) Stem Cell Rev Rep, 9, pp. 642-654. , PID: 23605563; Gross, J.C., Chaudhary, V., Bartscherer, K., Boutros, M., Active Wnt proteins are secreted on exosomes (2012) Nat Cell Biol, 14, pp. 1036-1045. , COI: 1:CAS:528:DC%2BC38XhtlGjsrfN, PID: 22983114; Kim, J.-A., Choi, H.-K., Kim, T.-M., Leem, S.-H., Oh, I.-H., Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling (2015) Stem Cell Res, 14, pp. 356-368. , COI: 1:CAS:528:DC%2BC2MXltFemsbo%3D, PID: 25863444; Ju, Z., Ma, J., Wang, C., Yu, J., Qiao, Y., Hei, F., Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells (2017) Inflammation, 40, pp. 486-496. , COI: 1:CAS:528:DC%2BC28XitFals7nE, PID: 28000095; Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., Xu, J., Functional proteins of mesenchymal stem cell-derived extracellular vesicles (2019) Stem Cell Res Ther, 10, pp. 1-11; Piper, R.C., Katzmann, D.J., Biogenesis and function of multivesicular bodies (2007) Annu Rev Cell Dev Biol, 23, pp. 519-547. , COI: 1:CAS:528:DC%2BD2sXhtlartrrO, PID: 17506697; Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Simons, M., Ceramide triggers budding of exosome vesicles into multivesicular endosomes (2008) Science, 319, pp. 1244-1247. , COI: 1:CAS:528:DC%2BD1cXisVSksLY%3D, PID: 18309083; Alenquer, M., Amorim, M.J., Exosome biogenesis, regulation, and function in viral infection (2015) Viruses, 7, pp. 5066-5083. , COI: 1:CAS:528:DC%2BC28XptlSms7c%3D, PID: 26393640; Li, M., Rong, Y., Chuang, Y.-S., Peng, D., Emr, S.D., Ubiquitin-dependent lysosomal membrane protein sorting and degradation (2015) Mol Cell, 57, pp. 467-478. , COI: 1:CAS:528:DC%2BC2MXhsVaru70%3D, PID: 25620559; Piper, R.C., Luzio, J.P., Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes (2007) Curr Opin Cell Biol, 19, pp. 459-465. , COI: 1:CAS:528:DC%2BD2sXpsFKhu70%3D, PID: 17689064; Robbins, P.D., Morelli, A.E., Regulation of immune responses by extracellular vesicles (2014) Nat Rev Immunol, 14, pp. 195-208. , COI: 1:CAS:528:DC%2BC2cXivFyhtbg%3D, PID: 24566916; Kowal, J., Tkach, M., Théry, C., Biogenesis and secretion of exosomes (2014) Curr Opin Cell Biol, 29, pp. 116-125. , COI: 1:CAS:528:DC%2BC2cXhtlGmt7vO, PID: 24959705; Henne, W.M., Buchkovich, N.J., Emr, S.D., The ESCRT pathway (2011) Dev Cell, 21, pp. 77-91. , COI: 1:CAS:528:DC%2BC3MXptVSqsr8%3D, PID: 21763610; Gorabi, A.M., Kiaie, N., Barreto, G.E., Read, M.I., Tafti, H.A., Sahebkar, A., The therapeutic potential of mesenchymal stem cell–derived exosomes in treatment of neurodegenerative diseases (2019) Mol Neurobiol, 56, pp. 8157-8167; Almeria, C., Weiss, R., Roy, M., Tripisciano, C., Kasper, C., Weber, V., Egger, D., Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro (2019) Front Bioeng Biotechnol, 7, p. 292. , PID: 31709251; Hyenne, V., Apaydin, A., Rodriguez, D., Spiegelhalter, C., Hoff-Yoessle, S., Diem, M., Tak, S., Goetz, J.G., RAL-1 controls multivesicular body biogenesis and exosome secretion (2015) J Cell Biol, 211, pp. 27-37. , COI: 1:CAS:528:DC%2BC2MXhslKrurjE, PID: 26459596; Alcayaga-Miranda, F., Varas-Godoy, M., Khoury, M., Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration (2016) Stem Cells Int, (3409), p. 169; Yu, X., Harris, S.L., Levine, A.J., The regulation of exosome secretion: a novel function of the p53 protein (2006) Cancer Res, 66, pp. 4795-4801. , COI: 1:CAS:528:DC%2BD28XjvF2kt74%3D, PID: 16651434; Kahroba, H., Hejazi, M.S., Samadi, N., Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer (2019) Cell Mol Life Sci, 76, pp. 1747-1758. , COI: 1:CAS:528:DC%2BC1MXmtlWrurw%3D, PID: 30734835; Ramos, T.L., Sánchez-Abarca, L.I., Muntión, S., Preciado, S., Puig, N., López-Ruano, G., Hernández-Hernández, Á., Rodríguez, C., MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry (2016) Cell Commun Sign, 14, pp. 1-14; Beckler, M.D., Higginbotham, J.N., Franklin, J.L., Ham, A.-J., Halvey, P.J., Imasuen, I.E., Whitwell, C., Coffey, R.J., Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS (2013) Mol Cell Proteomics, 12, pp. 343-355. , COI: 1:CAS:528:DC%2BC3sXitFCgtLY%3D; Ha, D., Yang, N., Nadithe, V., Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges (2016) Acta Pharmaceutica Sinica B, 6, pp. 287-296. , PID: 27471669; Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Chilamkurti, N., ExoCarta: a web-based compendium of exosomal cargo (2016) J Mol Biol, 428, pp. 688-692. , COI: 1:CAS:528:DC%2BC2MXhs1aktbfM, PID: 26434508; Keshtkar, S., Azarpira, N., Ghahremani, M.H., Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine (2018) Stem Cell Res Ther, 9, pp. 1-9; Welton, J.L., Khanna, S., Giles, P.J., Brennan, P., Brewis, I.A., Staffurth, J., Mason, M.D., Clayton, A., Proteomics analysis of bladder cancer exosomes (2010) Mol Cell Proteomics, 9, pp. 1324-1338. , COI: 1:CAS:528:DC%2BC3cXpsFCrtbo%3D, PID: 20224111; Zhang, Y., Liu, Y., Liu, H., Tang, W.H., Exosomes: biogenesis, biologic function and clinical potential (2019) Cell Biosci, 9, p. 19. , PID: 30815248; Frydrychowicz, M., Kolecka-Bednarczyk, A., Madejczyk, M., Yasar, S., Dworacki, G., Exosomes–structure, biogenesis and biological role in non-small-cell lung cancer (2015) Scand J Immunol, 81, pp. 2-10. , COI: 1:CAS:528:DC%2BC2cXitFOgt7rL, PID: 25359529; Théry, C., Zitvogel, L., Amigorena, S., Exosomes: composition, biogenesis and function (2002) Nat Rev Immunol, 2, pp. 569-579. , PID: 12154376; Bissig, C., Gruenberg, J., Lipid sorting and multivesicular endosome biogenesis (2013) Cold Spring Harbor Perspectives Biol, 5, p. a016816; Ma, J., Zhao, Y., Sun, L., Sun, X., Zhao, X., Sun, X., Qian, H., Zhu, W., Exosomes derived from AKt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D (2017) Stem Cells Transl Med, 6, pp. 51-59. , COI: 1:CAS:528:DC%2BC2sXitlKgtLg%3D, PID: 28170176; Shen, B.J., Zhangfwang, Y., Qin, Y., Zhou, Y., Qiu, J., Fan, Y., . CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury (2016) Stem Cells Int; Harting, M.T., Srivastava, A.K., Zhaorigetu, S., Bair, H., Prabhakara, K.S., Toledano Furman, N.E., Vykoukal, J.V., Olson, S.D., Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation (2018) Stem Cells, 36, pp. 79-90. , COI: 1:CAS:528:DC%2BC1cXjtFyhtw%3D%3D, PID: 29076623; Konala, V.B.R., Mamidi, M.K., Bhonde, R., Das, A.K., Pochampally, R., Pal, R., The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration (2016) Cytotherapy, 18, pp. 13-24. , COI: 1:CAS:528:DC%2BC2MXhsl2nu7zO, PID: 26631828; Raposo, G., Stoorvogel, W., Extracellular vesicles: exosomes, microvesicles, and friends (2013) J Cell Biol, 200, pp. 373-383. , COI: 1:CAS:528:DC%2BC3sXjtFCnsbk%3D, PID: 23420871; Gusachenko, O., Zenkova, M., Vlassov, V., Nucleic acids in exosomes: disease markers and intercellular communication molecules (2013) Biochem (Moscow), 78, pp. 1-7. , COI: 1:CAS:528:DC%2BC3sXhtFCktbo%3D; Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., Xu, J., Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs (2018) Stem Cell Res Ther, 9, p. 320. , COI: 1:CAS:528:DC%2BC1MXislOqsLo%3D, PID: 30463593; Baglio, S.R., Rooijers, K., Koppers-Lalic, D., Verweij, F.J., Lanzón, M.P., Zini, N., Naaijkens, B., Baldini, N., Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species (2015) Stem Cell Res Ther, 6, p. 127. , PID: 26129847; Silva, J., García, V., Zaballos, Á., Provencio, M., Lombardía, L., Almonacid, L., García, J.M., Bonilla, F., Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival (2011) Eur Respir J, 37, pp. 617-623. , COI: 1:CAS:528:DC%2BC3MXmslemtL0%3D, PID: 20595154; Taylor, D.D., Gercel-Taylor, C., MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer (2008) Gynecol Oncol, 110, pp. 13-21. , COI: 1:CAS:528:DC%2BD1cXnvVOlu74%3D, PID: 18589210; Gardiner, C., Vizio, D.D., Sahoo, S., Théry, C., Witwer, K.W., Wauben, M., Hill, A.F., Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey (2016) J Extracell Vesicles, 5, p. 32945. , PID: 27802845; Yeo, Y., Wee, R., (2013) Efficiency of exosome production correlates inversely with the developmental maturity of MSC donor; Zhang, M., Jin, K., Gao, L., Zhang, Z., Li, F., Zhou, F., Zhang, L., Methods and technologies for exosome isolation and characterization (2018) Small Methods, 2, p. 1800021; Yamashita, T., Takahashi, Y., Nishikawa, M., Takakura, Y., Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation (2016) Eur J Pharmaceutics Biopharm, 98, pp. 1-8. , COI: 1:CAS:528:DC%2BC2MXhslOrsrfL; Doyle, L.M., Wang, M.Z., Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis (2019) Cells, 8, p. 727. , COI: 1:CAS:528:DC%2BB3cXjsFams7g%3D; Böing, A.N., Van Der Pol, E., Grootemaat, A.E., Coumans, F.A., Sturk, A., Nieuwland, R., Single-step isolation of extracellular vesicles by size-exclusion chromatography (2014) J Extracell Vesicles, 3, p. 23430; Théry, C., Amigorena, S., Raposo, G., Clayton, A., Isolation and characterization of exosomes from cell culture supernatants and biological fluids (2006) Curr Protocols Cell Biol, 30, pp. 3.22. 21-23.22. 29; Lai, R.C., Yeo, R.W.Y., Lim, S.K., (2015) Mesenchymal Stem Cell Exosomes, In, pp. 82-88. , Seminars in cell & developmental biology, Elsevier; Wei, X., Yang, X., Han, Z.-P., Qu, F.-F., Shao, L., Shi, Y.-F., Mesenchymal stem cells: a new trend for cell therapy (2013) Acta pharmacol Sinica, 34, pp. 747-754. , COI: 1:CAS:528:DC%2BC3sXos12rs7k%3D; Baba, M.A., Bouchriti, Y., Achbani, A., Kharbach, A., Sine, H., Naciri, A., Risk of COVID-19 for patients with cancer: a narrative overview (2020) Eur J Med Educ Technol, 13, p. em2008; Salmenkari, H., Laitinen, A., Forsgård, R.A., Holappa, M., Linden, J., Pasanen, L., Korhonen, M., Nystedt, J., The use of unlicensed bone marrow–derived platelet lysate–expanded mesenchymal stromal cells in colitis: a pre-clinical study (2019) Cytotherapy, 21, pp. 175-188. , COI: 1:CAS:528:DC%2BC1MXjtVSmtw%3D%3D, PID: 30611671; Laso-García, F., Ramos-Cejudo, J., Carrillo-Salinas, F.J., Otero-Ortega, L., Feliú, A., Gómez-de Frutos, M., Mecha, M., Gutiérrez-Fernández, M., Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis (2018) Plos One, 13. , PID: 30231069; Ju, G.-Q., Cheng, J., Zhong, L., Wu, S., Zou, X.-Y., Zhang, G.-Y., Gu, D., Sun, J., Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction (2015) Plos one, 10. , PID: 25793303; Yu, B., Gong, M., Wang, Y., Millard, R.W., Pasha, Z., Yang, Y., Ashraf, M., Xu, M., Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles (2013) Plos one, 8. , COI: 1:CAS:528:DC%2BC3sXhsVWht7%2FE, PID: 24015301; Wang, N., Chen, C., Yang, D., Liao, Q., Luo, H., Wang, X., Zhou, F., Zeng, C., Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis (2017) Biochim Biophys Acta (BBA)-Mol Basis Dis, 1863, pp. 2085-2092. , COI: 1:CAS:528:DC%2BC2sXktVKju7k%3D; Arslan, F., Lai, R.C., Smeets, M.B., Akeroyd, L., Choo, A., Aguor, E.N., Timmers, L., Pasterkamp, G., Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury (2013) Stem Cell Res, 10, pp. 301-312. , COI: 1:CAS:528:DC%2BC3sXlt1Cms7Y%3D, PID: 23399448; Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., Shen, Z., Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation (2015) Cell Physiol Biochem, 37, pp. 2415-2424. , COI: 1:CAS:528:DC%2BC28XksFWrsA%3D%3D, PID: 26646808; Zhu, L.-P., Tian, T., Wang, J.-Y., He, J.-N., Chen, T., Pan, M., Xu, L., Li, C.-C., Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction (2018) Theranostics, 8, p. 6163. , COI: 1:CAS:528:DC%2BC1MXhtV2ns7nN, PID: 30613290; Chen, L., Lu, F.-B., Chen, D.-Z., Wu, J.-L., Xu, L.-M., Zheng, M.-H., Li, H., Gong, Y.-W., BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis (2018) Mol Immunol, 93, pp. 38-46. , COI: 1:CAS:528:DC%2BC2sXhsl2qu7fE, PID: 29145157; Yan, Y., Jiang, W., Tan, Y., Zou, S., Zhang, H., Mao, F., Gong, A., Xu, W., hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury (2017) Mol Ther, 25, pp. 465-479. , COI: 1:CAS:528:DC%2BC2sXmvFCmu74%3D, PID: 28089078; Tan, C.Y., Lai, R.C., Wong, W., Dan, Y.Y., Lim, S.-K., Ho, H.K., Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models (2014) Stem Cell Res Ther, 5, p. 76. , PID: 24915963; Tamura, R., Uemoto, S., Tabata, Y., Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model (2016) Inflammation Regen, 36, p. 26; Mardpour, S., Ghanian, M.H., Sadeghi-Abandansari, H., Mardpour, S., Nazari, A., Shekari, F., Baharvand, H., Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure (2019) ACS Appl Mater Interfaces, 11, pp. 37421-37433. , COI: 1:CAS:528:DC%2BC1MXhslOqu7vO, PID: 31525863; Haga, H., Yan, I.K., Takahashi, K., Matsuda, A., Patel, T., Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice (2017) Stem Cells Transl Med, 6, pp. 1262-1272. , COI: 1:CAS:528:DC%2BC2sXhtVGgt7bM, PID: 28213967; Boni, R., Ali, A., Shavandi, A., Clarkson, A.N., Current and novel polymeric biomaterials for neural tissue engineering (2018) J Biomed Sci, 25, p. 90. , COI: 1:CAS:528:DC%2BC1MXhtFektLrN, PID: 30572957; Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z.G., Chopp, M., MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles (2013) Stem Cells, 31, pp. 2737-2746. , COI: 1:CAS:528:DC%2BC2cXjtVCmtro%3D, PID: 23630198; Liu, W., Wang, Y., Gong, F., Rong, Y., Luo, Y., Tang, P., Zhou, Z., Jiang, T., Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes (2019) J Neurotrauma, 36, pp. 469-484. , PID: 29848167; Ma, Y., Dong, L., Zhou, D., Li, L., Zhang, W., Zhen, Y., Wang, T., Mao, C., Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats (2019) J Cell Mol Med, 23, pp. 2822-2835. , COI: 1:CAS:528:DC%2BC1MXmtlWhurw%3D, PID: 30772948; Mao, Q., Nguyen, P.D., Shanti, R.M., Shi, S., Shakoori, P., Zhang, Q., Le, A.D., Gingiva-derived mesenchymal stem cell-extracellular vesicles activate schwann cell repair phenotype and promote nerve regeneration (2019) Tissue Eng Part A, 25, pp. 887-900. , COI: 1:CAS:528:DC%2BC1MXhtFKhtrzE, PID: 30311853; Song, N., Zhang, T., Xu, X., Lu, Z., Yu, X., Fang, Y., Hu, J., Ding, X., miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation (2018) Front Physiol, 9, p. 790. , PID: 30013485; Zou, X., Zhang, G., Cheng, Z., Yin, D., Du, T., Ju, G., Miao, S., Zhu, Y., Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1 (2014) Stem Cell Res Ther, 5, p. 40. , PID: 24646750; Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., Zhang, B., Yan, Y., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro (2013) Stem Cell Res Ther, 4, pp. 1-13; Jiang, Z.-Z., Liu, Y.-M., Niu, X., Yin, J.-Y., Hu, B., Guo, S.-C., Fan, Y., Wang, N.-S., Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats (2016) Stem Cell Res Ther, 7, p. 24. , PID: 26852014; Eirin, A., Zhu, X.-Y., Puranik, A.S., Tang, H., McGurren, K.A., van Wijnen, A.J., Lerman, A., Lerman, L.O., Mesenchymal stem cell–derived extracellular vesicles attenuate kidney inflammation (2017) Kidney Int, 92, pp. 114-124. , COI: 1:CAS:528:DC%2BC2sXjsFGht7s%3D, PID: 28242034; Liang, X., Zhang, L., Wang, S., Han, Q., Zhao, R.C., Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a (2016) J Cell Sci, 129, pp. 2182-2189. , COI: 1:CAS:528:DC%2BC28XhslaqurvF, PID: 27252357; Ahn, S.Y., Park, W.S., Kim, Y.E., Sung, D.K., Sung, S.I., Ahn, J.Y., Chang, Y.S., Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury (2018) Exp Mol Med, 50, pp. 1-12. , PID: 30397194; Huang, R., Qin, C., Wang, J., Hu, Y., Zheng, G., Qiu, G., Ge, M., Xu, J., Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury (2019) Aging, 11, p. 7996. , COI: 1:CAS:528:DC%2BB3cXosVKjtL4%3D, PID: 31575829; Wei Li, J., Wei, L., Han, Z., Chen, Z., Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p (2019) Eur J Pharm, 852, pp. 68-76; Monsel, A., Zhu, Y.-G., Gennai, S., Hao, Q., Hu, S., Rouby, J.-J., Rosenzwajg, M., Lee, J.W., Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice (2015) Am J Respir Crit Care Med, 192, pp. 324-336. , COI: 1:CAS:528:DC%2BC2MXitVSjsbjL, PID: 26067592; Morrison, T.J., Jackson, M.V., Cunningham, E.K., Kissenpfennig, A., McAuley, D.F., O’Kane, C.M., Krasnodembskaya, A.D., Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer (2017) Am J Respir Crit Care Med, 196, pp. 1275-1286. , COI: 1:CAS:528:DC%2BC1cXitFCltrzI, PID: 28598224; Chen, J.-Y., An, R., Liu, Z.-J., Wang, J.-J., Chen, S.-Z., Hong, M.-M., Liu, J.-H., Chen, Y.-F., Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats (2014) Acta Pharmacol Sinica, 35, pp. 1121-1128. , COI: 1:CAS:528:DC%2BC2cXhsVOhtbvO; Yeo, R.W.Y., Lai, R.C., Tan, K.H., Lim, S.K., Exosome: a novel and safer therapeutic refinement of mesenchymal stem cell (2013) Exosomes Microvesicles, 1, p. 7; Kunter, U., Rong, S., Boor, P., Eitner, F., Müller-Newen, G., Djuric, Z., van Roeyen, C.R., Villa, L., Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes (2007) J Ame Soc Nephrol, 18, pp. 1754-1764. , COI: 1:CAS:528:DC%2BD2sXnt1Squ7k%3D; Assunção-Silva, R.C., Mendes-Pinheiro, B., Patrício, P., Behie, L.A., Teixeira, F.G., Pinto, L., Salgado, A.J., Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth (2018) Biochimie, 155, pp. 83-91. , PID: 30077816; Pires, A.O., Mendes-Pinheiro, B., Teixeira, F.G., Anjo, S.I., Ribeiro-Samy, S., Gomes, E.D., Serra, S.C., Sousa, N., Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis (2016) Stem Cells Dev, 25, pp. 1073-1083. , COI: 1:CAS:528:DC%2BC28XhtFegtr%2FE, PID: 27226274; Hoang, D.H., Nguyen, T.D., Nguyen HP, Nguyen XH, Do PTX, Dang VD, Dam PTM, Bui HTH, Trinh MQ, Vu DM. Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum-and xeno-free condition (2020) Front Mol Biosci, 7, p. 119; Wang, Z.-G., He, Z.-Y., Liang, S., Yang, Q., Cheng, P., Chen, A.-M., Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells (2020) Stem Cell Res Ther, 11, pp. 1-11; Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., Ratajczak, M., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery (2006) Leukemia, 20, pp. 847-856. , COI: 1:CAS:528:DC%2BD28XjslOhsbs%3D, PID: 16453000; Gradilla, A.-C., González, E., Seijo, I., Andrés, G., Bischoff, M., González-Mendez, L., Sánchez, V., Guerra, M., Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion (2014) Nat Commun, 5, pp. 1-13; McBride, J.D., Rodriguez-Menocal, L., Guzman, W., Candanedo, A., Garcia-Contreras, M., Badiavas, E.V., Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro (2017) Stem Cells Dev, 26, pp. 1384-1398. , COI: 1:CAS:528:DC%2BC2sXhsF2rtrjL, PID: 28679315; Ranghino, A., Bruno, S., Bussolati, B., Moggio, A., Dimuccio, V., Tapparo, M., Biancone, L., Camussi, G., The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury (2017) Stem Cell Res Ther, 8, pp. 1-15; Ho, J.H., Chen, Y.-F., Ma, W.-H., Tseng, T.-C., Chen, M.-H., Lee, O.K., Cell contact accelerates replicative senescence of human mesenchymal stem cells independent of telomere shortening and p53 activation: roles of Ras and oxidative stress (2011) Cell Transplant, 20, pp. 1209-1220. , PID: 21176396; Xin, H., Wang, F., Li, Y., Lu, Q.-E., Cheung, W.L., Zhang, Y., Zhang, Z.G., Chopp, M., Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells (2017) Cell Transplant, 26, pp. 243-257. , PID: 27677799; Yin, L., Liu, X., Shi, Y., Ocansey, D.K.W., Hu, Y., Li, X., Zhang, C., Qian, H., Therapeutic advances of stem cell-derived extracellular vesicles in regenerative medicine (2020) Cells, 9, p. 707. , COI: 1:CAS:528:DC%2BB3cXhsVShur7J; Colter, D.C., Class, R., DiGirolamo, C.M., Prockop, D.J., Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow (2000) Proc Natl Acad Sci, 97, pp. 3213-3218. , COI: 1:CAS:528:DC%2BD3cXitlWqs7s%3D, PID: 10725391; Camussi, G., Deregibus, M.C., Tetta, C., Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information (2010) Curr Opin Nephrol Hypertens, 19, pp. 7-12. , COI: 1:CAS:528:DC%2BD1MXhsFentr7P, PID: 19823086; Eldh, M., Ekström, K., Valadi, H., Sjöstrand, M., Olsson, B., Jernås, M., Lötvall, J., Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA (2010) PloS one, 5. , PID: 21179422; Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., Lötvall, J.O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells (2007) Nat Cell Biol, 9, pp. 654-659. , COI: 1:CAS:528:DC%2BD2sXmtVSmtb8%3D; Vishnubhatla, I., Corteling, R., Stevanato, L., Hicks, C., Sinden, J., The development of stem cell-derived exosomes as a cell-free regenerative medicine (2014) J Circ Biomark, 3, pp. 2-3; Roth, G.A., Huffman, M.D., Moran, A.E., Feigin, V., Mensah, G.A., Naghavi, M., Murray, C.J., Global and regional patterns in cardiovascular mortality from 1990 to 2013 (2015) Circulation, 132, pp. 1667-1678. , PID: 26503749; Beltrami, A.P., Urbanek, K., Kajstura, J., Yan, S.-M., Finato, N., Bussani, R., Nadal-Ginard, B., Beltrami, C.A., Evidence that human cardiac myocytes divide after myocardial infarction (2001) N Engl J Med, 344, pp. 1750-1757. , COI: 1:STN:280:DC%2BD3MzivVeitQ%3D%3D, PID: 11396441; Malliaras, K., Zhang, Y., Seinfeld, J., Galang, G., Tseliou, E., Cheng, K., Sun, B., Marbán, E., Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart (2013) EMBO Mol Med, 5, pp. 191-209. , COI: 1:CAS:528:DC%2BC3sXhvVykt78%3D, PID: 23255322; Pro-angiogenic actions of CMC-derived extracellular vesicles rely on selective packaging of angiopoietin 1 and 2, but not FGF-2 and VEGF (2019) Stem Cell Rev Rep, 15, pp. 530-542; Lopatina, T., Bruno, S., Tetta, C., Kalinina, N., Porta, M., Camussi, G., Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential (2014) Cell Commun Signal, 12, pp. 1-12; Schmidt, C.E., Leach, J.B., Neural tissue engineering: strategies for repair and regeneration (2003) Annu Rev Biomed Eng, 5, pp. 293-347. , COI: 1:CAS:528:DC%2BD3sXotlGqsrg%3D, PID: 14527315; Bodart-Santos, V., de Carvalho, L.R., de Godoy, M.A., Batista, A.F., Saraiva, L.M., Lima, L.G., Abreu, C.A., Mendez-Otero, R., Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers (2019) Stem Cell Res Ther, 10, pp. 1-13; Chen, S.Y., Lin, M.C., Tsai, J.S., He, P.L., Luo, W.T., Herschman, H., Li, H.J., EP4 antagonist-elicited extracellular vesicles from mesenchymal stem cells rescue cognition/learning deficiencies by restoring brain cellular functions (2019) Stem Cells Transl Med, 8, pp. 707-723. , COI: 1:CAS:528:DC%2BC1MXhsFKhsLzM, PID: 30891948; Liu, Y., Cui, J., Wang, H., Hezam, K., Zhao, X., Huang, H., Chen, S., Guo, Z., Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment (2020) Stem Cell Res Ther, 11, pp. 1-12. , COI: 1:CAS:528:DC%2BB3cXit1Sisb7I; Nargesi, A.A., Lerman, L.O., Eirin, A., Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges (2017) Stem Cell Res Ther, 8, pp. 1-12; Chen, L., Wang, Y., Li, S., Zuo, B., Zhang, X., Wang, F., Sun, D., Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway (2020) Theranostics, 10, p. 9425. , COI: 1:CAS:528:DC%2BB3cXitVOhsrjI, PID: 32802201; Jiang, Z.-Z., Liu, Y.-M., Niu, X., Yin, J.-Y., Hu, B., Guo, S.-C., Fan, Y., Wang, N.-S., Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats (2016) Stem Cell Res Ther, 7, pp. 1-13; Khatri, M., Richardson, L.A., Meulia, T., Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model (2018) Stem Cell Res Ther, 9, pp. 1-13; Bogan, D.R., A snapshot of racial and geographic distribution of lung and bronchus cancer incidence and mortality in Mississippi, 2008-2012 (2017) Eur J Environ Public Health, 1, p. 01; Wang, H., Zheng, R., Chen, Q., Shao, J., Yu, J., Hu, S., Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF) (2017) Stem Cell Res Ther, 8, pp. 1-10; Ridzuan, N., Zakaria, N., Widera, D., Sheard, J., Morimoto, M., Kiyokawa, H., Isa, S.A.M., Ooi, G.-C., Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD) (2021) Stem Cell Res Ther, 12, pp. 1-21; Harrell, C.R., Miloradovic, D., Sadikot, R., Fellabaum, C., Markovic, B.S., Miloradovic, D., Acovic, A., Volarevic, V., Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation (2020) Anal Cell Pathol, 2020, p. 3153891; Sengupta, V., Sengupta, S., Lazo, A., Woods, P., Nolan, A., Bremer, N., Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19 (2020) Stem Cells Dev, 29, pp. 747-754. , COI: 1:CAS:528:DC%2BB3cXhtFKhu7rO, PID: 32380908; Corcoran, C., Rani, S., O’Brien, K., O’Neill, A., Prencipe, M., Sheikh, R., Webb, G., Crown, J., Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes (2012) Plos one, 7. , COI: 1:CAS:528:DC%2BC38XhvFSks73N, PID: 23251413; Quail, D.F., Joyce, J.A., Microenvironmental regulation of tumor progression and metastasis (2013) Nat Med, 19, pp. 1423-1437. , COI: 1:CAS:528:DC%2BC3sXhslCmsrjL, PID: 24202395; Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674. , COI: 1:CAS:528:DC%2BC3MXjsFeqtrk%3D, PID: 21376230; Nomoto-Kojima, N., Aoki, S., Uchihashi, K., Matsunobu, A., Koike, E., Ootani, A., Yonemitsu, N., Toda, S., Interaction between adipose tissue stromal cells and gastric cancer cells in vitro (2011) Cell Tissue Res, 344, pp. 287-298. , COI: 1:CAS:528:DC%2BC3MXlsFKis7o%3D, PID: 21384185; Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R.C., Ye, L., Zhang, X., Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model (2008) Cell Res, 18, pp. 500-507. , COI: 1:CAS:528:DC%2BD1cXktFCksrc%3D, PID: 18364678; Roccaro, A.M., Sacco, A., Maiso, P., Azab, A.K., Tai, Y.-T., Reagan, M., Azab, F., Weller, E., BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression (2013) J Clin Investig, 123, pp. 1542-1555. , COI: 1:CAS:528:DC%2BC3sXlvVKhsLo%3D, PID: 23454749; Bliss, S.A., Sinha, G., Sandiford, O.A., Williams, L.M., Engelberth, D.J., Guiro, K., Isenalumhe, L.L., Bryan, M., Mesenchymal stem cell–derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow (2016) Cancer Res, 76, pp. 5832-5844. , COI: 1:CAS:528:DC%2BC28Xhs1SmtLjP, PID: 27569215; Lin, R., Wang, S., Zhao, R.C., Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model (2013) Mol Cell Biochem, 383, pp. 13-20. , COI: 1:CAS:528:DC%2BC3sXhtVehsb3F, PID: 23812844; Qi, J., Zhou, Y., Jiao, Z., Wang, X., Zhao, Y., Li, Y., Chen, H., Li, Y., Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway (2017) Cell Physiol Biochem, 42, pp. 2242-2254. , COI: 1:CAS:528:DC%2BC2sXhs12rsLrL, PID: 28817816; Gu, H., Ji, R., Zhang, X., Wang, M., Zhu, W., Qian, H., Chen, Y., Xu, W., Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway (2016) Mol Med Reports, 14, pp. 3452-3458. , COI: 1:CAS:528:DC%2BC2sXht1Gqtr8%3D; Del Fattore, A., Luciano, R., Saracino, R., Battafarano, G., Rizzo, C., Pascucci, L., Alessandri, G., Fierabracci, A., Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells (2015) Expert Opin Biol Ther, 15, pp. 495-504. , PID: 25539575; O’brien, K., Khan, S., Gilligan, K., Zafar, H., Lalor, P., Glynn, C., O’Flatharta, C., De Bhulbh, A., Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379 (2018) Oncogene, 37, pp. 2137-2149. , PID: 29367765; Wang, M., Zhao, C., Shi, H., Zhang, B., Zhang, L., Zhang, X., Wang, S., Huang, F., Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer (2014) Br J Cancer, 110, pp. 1199-1210. , COI: 1:CAS:528:DC%2BC2cXhsVCms7g%3D, PID: 24473397; Ji, R., Zhang, B., Zhang, X., Xue, J., Yuan, X., Yan, Y., Wang, M., Xu, W., Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer (2015) Cell Cycle, 14, pp. 2473-2483. , COI: 1:CAS:528:DC%2BC2MXhvVKrsb%2FO, PID: 26091251; Katakowski, M., Buller, B., Zheng, X., Lu, Y., Rogers, T., Osobamiro, O., Shu, W., Chopp, M., Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth (2013) Cancer Lett, 335, pp. 201-204. , COI: 1:CAS:528:DC%2BC3sXjsFertb0%3D, PID: 23419525; Lee, J.-K., Park, S.-R., Jung, B.-K., Jeon, Y.-K., Lee, Y.-S., Kim, M.-K., Kim, Y.-G., Kim, C.-W., Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells (2013) Plos one, 8. , PID: 24391924; Lin, H.D., Fong, C.Y., Biswas, A., Choolani, M., Bongso, A., Human Wharton’s jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells (2014) Stem Cell Rev Rep, 10, pp. 573-586. , PID: 24789672; Lou, G., Song, X., Yang, F., Wu, S., Wang, J., Chen, Z., Liu, Y., Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma (2015) J Hematol Oncol, 8, pp. 1-11. , PID: 25622682; Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R.-U., Yoshida, M., Ochiya, T., Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells (2014) Sci Signal, 7, p. ra63. , PID: 24985346; Pakravan, K., Babashah, S., Sadeghizadeh, M., Mowla, S.J., Mossahebi-Mohammadi, M., Ataei, F., Dana, N., Javan, M., MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells (2017) Cell Oncol, 40, pp. 457-470. , COI: 1:CAS:528:DC%2BC2sXht1ektLnP; Wu, S., Ju, G.-Q., Du, T., Zhu, Y.-J., Liu, G.-H., Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo (2013) Plos one, 8. , COI: 1:CAS:528:DC%2BC3sXms12qs7s%3D, PID: 23593475; Xie, C., Du, L.-Y., Guo, F., Li, X., Cheng, B., Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration (2019) Mol Cell Biochem, 458, pp. 11-26. , COI: 1:CAS:528:DC%2BC1MXhtV2hs7%2FI, PID: 31165315; Zhang, F., Lu, Y., Wang, M., Zhu, J., Li, J., Zhang, P., Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B (2020) Mol Cell Probes, 51; Reza, A.M.M.T., Choi, Y.-J., Yasuda, H., Kim, J.-H., Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells (2016) Sci Rep, 6, pp. 1-15; Buhmeida, A., Dallol, A., Merdad, A., Al-Maghrabi, J., Gari, M.A., Abu-Elmagd, M.M., Chaudhary, A.G., Ermiah, E., High fibroblast growth factor 19 (FGF19) expression predicts worse prognosis in invasive ductal carcinoma of breast (2014) Tumor Biol, 35, pp. 2817-2824. , COI: 1:CAS:528:DC%2BC2cXltlyqsbg%3D; Sharma, A., Role of stem cell derived exosomes in tumor biology (2018) Int J Cancer, 142, pp. 1086-1092. , COI: 1:CAS:528:DC%2BC2sXhs1Gltb%2FE, PID: 28983919; Vallabhaneni, K.C., Penfornis, P., Dhule, S., Guillonneau, F., Adams, K.V., Mo, Y.Y., Xu, R., Vemuri, M.C., Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites (2015) Oncotarget, 6, p. 4953. , PID: 25669974; Dong, L., Pu, Y., Zhang, L., Qi, Q., Xu, L., Li, W., Wei, C., Zhu, J., Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410 (2018) Cell Death Dis, 9, pp. 1-13; Zhu, W., Huang, L., Li, Y., Zhang, X., Gu, J., Yan, Y., Xu, X., Xu, W., Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo (2012) Cancer Lett, 315, pp. 28-37. , COI: 1:CAS:528:DC%2BC3MXhsFeqs7vP, PID: 22055459; Takahara, K., Ii, M., Inamoto, T., Nakagawa, T., Ibuki, N., Yoshikawa, Y., Tsujino, T., Takai, T., microRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate cancer (2016) Stem Cells Dev, 25, pp. 1290-1298. , COI: 1:CAS:528:DC%2BC28XhsVChsbfM, PID: 27465939; Weis, S.M., Cheresh, D.A., Tumor angiogenesis: molecular pathways and therapeutic targets (2011) Nat Med, 17, pp. 1359-1370. , COI: 1:CAS:528:DC%2BC3MXhsVOisLfE, PID: 22064426; Kerbel, R.S., Tumor angiogenesis (2008) New Engl J Med, 358, pp. 2039-2049. , COI: 1:CAS:528:DC%2BD1cXlsFyrtro%3D, PID: 18463380; Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges (2006) Nat Med, 12, pp. 895-904. , COI: 1:CAS:528:DC%2BD28Xnsl2iu74%3D, PID: 16892035; Valastyan, S., Weinberg, R.A., Tumor metastasis: molecular insights and evolving paradigms (2011) Cell, 147, pp. 275-292. , COI: 1:CAS:528:DC%2BC3MXhtlaksb3N, PID: 22000009; Kahlert, C., Kalluri, R., Exosomes in tumor microenvironment influence cancer progression and metastasis (2013) J Mol Med, 91, pp. 431-437. , COI: 1:CAS:528:DC%2BC3sXltFCiuro%3D, PID: 23519402; Shimbo, K., Miyaki, S., Ishitobi, H., Kato, Y., Kubo, T., Shimose, S., Ochi, M., Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration (2014) Biochem Biophys Res Commun, 445, pp. 381-387. , COI: 1:CAS:528:DC%2BC2cXivFCgs7o%3D, PID: 24525123; Syn, N.L., Wang, L., Chow, E.K.-H., Lim, C.T., Goh, B.-C., Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges (2017) Trends Biotechnol, 35, pp. 665-676. , COI: 1:CAS:528:DC%2BC2sXksVCksr0%3D, PID: 28365132; Yuan, Z., Kolluri, K.K., Gowers, K.H., Janes, S.M., TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy (2017) J Extracell Vesicles, 6, p. 1265291. , PID: 28326166; Fitts, C.A., Ji, N., Li, Y., Tan, C., Exploiting exosomes in cancer liquid biopsies and drug delivery (2019) Adv Healthcare Mater, 8, p. 1801268; Kalluri, R., LeBleu, V.S., (2020) The biology, function, and biomedical applications of exosomes, Science, 367; Pascucci, L., Coccè, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., Viganò, L., Doglia, S.M., Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery (2014) J Control Release, 192, pp. 262-270. , COI: 1:CAS:528:DC%2BC2cXht1Ghu7fM, PID: 25084218; Melzer, C., Rehn, V., Yang, Y., Bähre, H., von der Ohe, J., Hass, R., Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells (2019) Cancers, 11, p. 798. , COI: 1:CAS:528:DC%2BB3cXjtlCksLk%3D; Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Portillo, H.A.D., Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper (2015) J Extracell Vesicles, 4; Forsberg, M.H., Kink, J.A., Hematti, P., Capitini, C.M., Mesenchymal Stromal Cells and Exosomes: Progress and Challenges (2020) Front Cell Dev Biol, 8, p. 665. , PID: 32766255; Gowen, A., Shahjin, F., Chand, S., Odegaard, K.E., Yelamanchili, S.V., Mesenchymal stem cell-derived extracellular vesicles: Challenges in clinical applications (2020) Front Cell Dev Biol, 8, p. 149

Indexed by Scopus

Leave a Comment