Mapping and 3D modelling using quadrotor drone and GIS software

Budiharto W., Irwansyah E., Suroso J.S., Chowanda A., Ngarianto H., Gunawan A.A.S.

Computer Science Department, School of Computer Science, Bina Nusantara University, West Jakarta, Indonesia; Information Systems Department, BINUS Graduate Program-Master of Information Systems Program, Jakarta, Indonesia; Mathematics Department, School of Computer Science, Bina Nusantara University, Jakarta, 11480, Indonesia


Background: The main obstacle for local and daily or weekly time-series mapping using very high-resolution satellite imagery is the high price and availability of data. These constraints are currently obtaining solutions in line with the development of improved UAV drone technology with a wider range and imaging sensors that can be used. Findings: Research conducted using Inspire 2 quadcopter drones with RGB cameras, developing 3D models using photogrammetric and situation mapping uses geographic information systems. The drone used has advantages in a wider range of areas with adequate power support. The drone is also supported by a high-quality camera with dreadlocks for image stability, so it is suitable for use in mapping activities. Conclusions: Using Google earth data at two separate locations as a benchmark for the accuracy of measurement of the area at three variations of flying height in taking pictures, the results obtained were 98.53% (98.68%), 95.2% (96.1%), and 94.4% (94.7%) for each altitude of 40, 80, and 100 m. The next research is to assess the results of the area for more objects from the land cover as well as for the more varied polygon area so that the reliability of the method can be used in general © 2021, The Author(s).

3D model; AgiSof; ArcMap; Drone; Mapping; Situation map


Journal of Big Data

Publisher: Springer Science and Business Media Deutschland GmbH

Volume 8, Issue 1, Art No 48, Page – , Page Count

Journal Link:

doi: 10.1186/s40537-021-00436-8

Issn: 21961115

Type: All Open Access, Gold


Kalantar, B., Mansor, S.B., Sameen, M.I., Pradhan, B., Shafri, H.Z., Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis (2017) Int J Remote Sens, 38 (8-10), pp. 2535-2556; Pytharouli, S., Souter, J., Tziavou, O., Unmanned Aerial Vehicle (UAV) based mapping in engineering surveys: Technical considerations for optimum results (2019) The 4Th Joint International Symposium on Deformation Monitoring; Iizuka, K., Itoh, M., Shiodera, S., Matsubara, T., Dohar, M., Watanabe, K., Advantages of unmanned aerial vehicle (UAV) photogrammetry for landscape analysis compared with satellite data: A case study of postmining sites in Indonesia (2018) Cogent Geoscience, 4 (1), p. 1498180; Nex, F., Remondino, F., UAV for 3D mapping applications: a review (2014) Applied Geomatics, 6 (1), pp. 1-15; Yao, H., Qin, R., Chen, X., Unmanned aerial vehicle for remote sensing applications—a review (2019) Remote Sensing, 11 (12), p. 1443; Pajares, G., Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs) (2015) Photogram Eng Remote Sens, 81 (4), pp. 281-330; Saadatseresht, M., Hashempour, A.H., Hasanlou, M., UAV photogrammetry: a practical solution for challenging mapping projects (2015) Int Arch Photogram Remote Sens Spatial Inform Sci, 40 (1), p. 619; Hassler, S.C., Baysal-Gurel, F., Unmanned Aircraft System (UAS) technology and applications in agriculture (2019) Agronomy, 9 (10), p. 618; Navia, J., Mondragon, I., Patino, D., Colorado, J., Multispectral mapping in agriculture: Terrain mosaic using an autonomous quadcopter UAV (2016) 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1351-1358. , . New York: IEEE; Puri, V., Nayyar, A., Raja, L., Agriculture drones: a modern breakthrough in precision agriculture (2017) J Stat Manag Syst, 20 (4), pp. 507-518; (2016) ICAO’s Circular 328 AN/190: Unmanned Aircraft System, , PDF. ICAO. Retrieved 3 February; Niranjan, S., Gupta, G., Sharma, N., Mangal, M., Singh, V., Initial efforts toward mission-specific imaging surveys from aerial exploring platforms: UAV (2007) Map World Forum, , Hyderabad, India; Everaerts, J., The use of unmanned aerial vehicles (UAVS) for remote sensing and mapping (2008) International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 37 (B1), pp. 1187-1192; Casella, E., Drechsel, J., Winter, C., Benninghoff, M., Rovere, A., Accuracy of sand beach topography surveying by drones and photogrammetry (2020) Geo-Mar Lett, pp. 1-14; Cruzan, M.B., Weinstein, B.G., Grasty, M.R., Kohrn, B.F., Hendrickson, E.C., Arredondo, T.M., Thompson, P.G., Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology (2016) Appl Plant Sci, 4 (9), p. 1600041; Ruwaimana, M., Satyanarayana, B., Otero, V., Muslim, A.M., The advantages of using drones over space-borne imagery in the mapping of mangrove forests (2018) PLoS ONE, 13 (7); Villanueva Escobar, J.R., Iglesias Martínez, L., Pérez Montiel, J.I., DEM Generation from fixed-wing UAV imaging and LiDAR-derived ground control points for flood estimations (2019) Sensors, 19 (14), p. 3205; Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., Zhang, L., A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery (2018) PLoS ONE, 13 (4); Nuijten, R.J., Kooistra, L., De Deyn, G.B., Using unmanned aerial systems (UAS) and object-based image analysis (OBIA) for measuring plant-soil feedback effects on crop productivity (2019) Drones, 3 (3), p. 54; Sola-Guirado, R.R., Castillo-Ruiz, F.J., Jiménez-Jiménez, F., Blanco-Roldan, G.L., Castro-Garcia, S., Gil-Ribes, J.A., Olive actual “on year” yield forecast tool based on the tree canopy geometry using UAS imagery (2017) Sensors, 17 (8), p. 1743; Natesan, S., Armenakis, C., Benari, G., Lee, R., Use of UAV-borne spectrometer for land cover classification (2018) Drones, 2 (2), p. 16; Girolamo-Neto, C.D., Sanches, I.D.A., Neves, A.K., Prudente, V.H.R., Körting, T.S., Picoli, M.C.A., Assessment of texture features for bermudagrass (cynodon dactylon) detection in sugarcane plantations (2019) Drones, 3 (2), p. 36; Sandino, J., Pegg, G., Gonzalez, F., Smith, G., Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence (2018) Sensors, 18 (4), p. 944; Xavier, T.W., Souto, R.N., Statella, T., Galbieri, R., Santos, E.S., Suli, G.S., Zeilhofer, P., Identification of Ramularia leaf blight cotton disease infection levels by multispectral, multiscale UAV imagery (2019) Drones, 3 (2), p. 33; Koh, J.C., Hayden, M., Daetwyler, H., Kant, S., Estimation of crop plant density at early mixed growth stages using UAV imagery (2019) Plant Methods, 15 (1), p. 64; Grznárová, A., Mokroš, M., Surový, P., Slavík, M., Pondelík, M., Merganič, J., The crown diameter estimation from fixed wing type of UAV imager (2019) Int Arch Photogram Remote Sens Spatial Inform Sci; JuniatiHarintaka, E.H., Perbandingan Ragam Input Model Ketinggian Untuk Pembentukan True Orthophoto Di Wilayah Urban (In Bahasa) (2018) Geomatika, 24 (2), pp. 49-60; Ibrahim, F., Suharyadi, R., (2014) Teknik Klasifikasi Berbasis Objek Citra Penginderaan Jauh untuk Pemetaan Tutupan Lahan Sebagian Kecamatan Mlati Kabupaten Sleman (In Bahasa), , Sekolah Vokasi Universitas Gadjah Mada, Yogyakarta; Greenwood, F., (2011) Drone and Aerial Observations

Indexed by Scopus

Leave a Comment