Machine type communications: key drivers and enablers towards the 6G era

Mahmood N.H., Böcker S., Moerman I., López O.A., Munari A., Mikhaylov K., Clazzer F., Bartz H., Park O.-S., Mercier E., Saidi S., Osorio D.M., Jäntti R., Pragada R., Annanperä E., Ma Y., Wietfeld C., Andraud M., Liva G., Chen Y., Garro E., Burkhardt F., Liu C.-F., Alves H., Sadi Y., Kelanti M., Doré J.-B., Kim E., Shin J.S., Park G.-Y., Kim S.-K., Yoon C., Anwar K., Seppänen P.

University of Oulu, Oulu, Finland; TU Dortmund University, Dortmund, Germany; imec – Ghent University, Ghent, Belgium; German Aerospace Center (DLR), Cologne, Germany; ETRI, Daejeon, South Korea; CEA-Leti, Grenoble, France; Aalto University, Espoo, Finland; InterDigital, Delaware, United States; ZTE Corporation, Shenzhen, China; State Key Laboratory of Mobile Network and Mobile Multimedia, Shenzhen, China; Huawei Technologies, Ontario, Canada; Universitat Politècnica de València, Valencia, Spain; Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany; Kadir Has University, Istanbul, Turkey; Telkom University, Bandung, Indonesia


Abstract

The recently introduced 5G New Radio is the first wireless standard natively designed to support critical and massive machine type communications (MTC). However, it is already becoming evident that some of the more demanding requirements for MTC cannot be fully supported by 5G networks. Alongside, emerging use cases and applications towards 2030 will give rise to new and more stringent requirements on wireless connectivity in general and MTC in particular. Next generation wireless networks, namely 6G, should therefore be an agile and efficient convergent network designed to meet the diverse and challenging requirements anticipated by 2030. This paper explores the main drivers and requirements of MTC towards 6G, and discusses a wide variety of enabling technologies. More specifically, we first explore the emerging key performance indicators for MTC in 6G. Thereafter, we present a vision for an MTC-optimized holistic end-to-end network architecture. Finally, key enablers towards (1) ultra-low power MTC, (2) massively scalable global connectivity, (3) critical and dependable MTC, and (4) security and privacy preserving schemes for MTC are detailed. Our main objective is to present a set of research directions considering different aspects for an MTC-optimized 6G network in the 2030-era. © 2021, The Author(s).

6G; E2E performance; Machine type communications; Random access; Ultra reliable low-latency communications; Zero-energy MTC


Journal

Eurasip Journal on Wireless Communications and Networking

Publisher: Springer Science and Business Media Deutschland GmbH

Volume 2021, Issue 1, Art No 134, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107897362&doi=10.1186%2fs13638-021-02010-5&partnerID=40&md5=7db8754a92dd48fc9f0e815be9807db8

doi: 10.1186/s13638-021-02010-5

Issn: 16871472

Type: All Open Access, Gold, Green


References

(2017) 3GPP, 5G; Study on Scenarios and Requirements for Next Generation Access Technologies, , tR 38.913; Popovski, P., Nielsen, J.J., Stefanovic, C., Carvalho, E.D., Strom, E., Trillingsgaard, K.F., Bana, A., Sorensen, R.B., Wireless access for ultra-reliable low-latency communication: principles and building blocks (2018) IEEE Netw., 32 (2), pp. 16-23; Sachs, J., Andersson, L.A.A., Araújo, J., Curescu, C., Lundsjö, J., Rune, G., Steinbach, E., Wikström, G., Adaptive 5G low-latency communication for tactile internet services (2019) Proc. IEEE, 107 (2), pp. 325-349; Mahmood, N.H., López, O.A., Clazzer, F., Munari, A., Random access for cellular systems (2020) Wiley 5G Ref, pp. 1-25. , https://doi.org/10.1002/9781119471509.w5GRef030; Mahmood, N.H., Laselva, D., Palacios, D., Emara, M., Filippou, M.C., Kim, D.M., de La Bandera, I., Multi-channel access solutions for 5G new radio (2019) Proceedings of IEEE Wireless Communications and Networking Conference (WCNC) Workshops (Marrakech, Morocco, pp. 1-6; Ghosh, A., Maeder, A., Baker, M., Chandramouli, D., 5G evolution: a view on 5G cellular technology beyond 3GPP release 15 (2019) IEEE Access, 7, pp. 127639-127651; Galloway, B., Hancke, G.P., Introduction to industrial control networks (2013) IEEE Commun. Surv. Tutor., 15, pp. 860-880; Latva-Aho, M., Leppänen, K., (2019) Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence (White Paper), , Oulu, Finland: 6G Flagship; Park, J., Samarakoon, S., Shiri, H., Abdel-Aziz, M.K., Nishio, T., Elgabli, A., Bennis, M., (2020) Extreme URLLC: Vision, Challenges, and Key Enablers, , arXiv, [cs.IT]; Mahmood, N.H., (2020) White Paper on Critical and Massive Machine Type Communication Towards 6G, , http://jultika.oulu.fi/files/isbn9789526226781.pdf, ser. 6G Research Visions, nr. 11, N. H. Mahmood, O. Lopez, O.-S. Park, I. Moerman, K. Mikhaylov, E. Mercier, A. Munari, F. Clazzer, S. Böcker, H. Bartz, Eds. Oulu, Finland: University of Oulu, Online; Berardinelli, G., Mahmood, N.H., Rodriguez, I., Mogensen, P.E., Beyond 5G wireless IRT for Industry 4.0: Design principles and spectrum aspects (2018) Proceedings of IEEE Globecom Workshops, , Abu Dhabi, UAE; Katz, M., Matinmikko-Blue, M., Latva-Aho, M., 6Genesis flagship program: Building the bridges towards 6G-enabled wireless smart society and ecosystem, , in Proceedings of IEEE 10th Latin-American Conference on Communications (LATINCOM) (Guadalajara; David, K., Berndt, H., 6G vision and requirements: is there any need for beyond 5G? (2018) IEEE Veh. Technol. Mag., 13 (3), pp. 72-80; Saad, W., Bennis, M., Chen, M., A vision of 6G wireless systems: applications, trends, technologies, and open research problems (2020) IEEE Netw., 34 (3), pp. 134-142; Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., Karagiannidis, G.K., Fan, P., 6G wireless networks: vision, requirements, architecture, and key technologies (2019) IEEE Veh. Technol. Mag., 14 (3), pp. 28-41; Zong, B., Fan, C., Wang, X., Duan, X., Wang, B., Wang, J., 6G technologies: key drivers, core requirements, system architectures, and enabling technologies (2019) IEEE Veh. Technol. Mag., 14 (3), pp. 18-27; Calvanese Strinati, E., Barbarossa, S., Gonzalez-Jimenez, J.L., Ktenas, D., Cassiau, N., Maret, L., Dehos, C., 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication (2019) IEEE Veh. Technol. Mag., 14 (3), pp. 42-50; Tariq, F., Khandaker, M.R.A., Wong, K., Imran, M.A., Bennis, M., Debbah, M., A speculative study on 6G (2020) IEEE Wirel. Commun., 27 (4), pp. 118-125; Viswanathan, H., Mogensen, P.E., Communications in the 6G era (2020) IEEE Access, 8, pp. 57063-57074; Dang, S., Amin, O., Shihada, B., Alouini, M.-S., What should 6G be? (2020) Nat. Electron., 3 (1), pp. 20-29; Mahmood, N.H., Alves, H., López, O.L.A., Shehab, M., Osorio, D.P.M., Latva-Aho, M., Six key enablers for machine type communication in 6G (2020) Proceedings 2Nd 6G Wireless Summit, , Levi, Finland; 5G evolution and 6G (2020) White Paper, , https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_6g/DOCOMO_6G_White_PaperEN_20200124.pdf, Online; The next hyper-connected experience for all (2020) White Paper, , https://research.samsung.com/next-generation-communications, Online, Available; Mahmood, N.H., López, O.A., Alves, H., Latva-Aho, M., A predictive interference management algorithm for URLLC in Beyond 5G networks (2020) IEEE Commun. Lett.; Yaacoub, E., Alouini, M., A key 6G challenge and opportunity” connecting the base of the pyramid: a survey on rural connectivity (2020) Proc. IEEE, 108 (4), pp. 533-582; ; (2018) Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles, , report J3016; Nahavandi, S., Industry 5.0—a human-centric solution (2019) Sustainability, 11 (16), p. 4371; Portilla, J., Mujica, G., Lee, J., Riesgo, T., The extreme edge at the bottom of the Internet of Things: a review (2019) IEEE Sens. J., 19 (9), pp. 3179-3190; Tran, L.-G., Cha, H.-K., Park, W.-T., RF power harvesting: a review on designing methodologies and applications (2017) Micro Nano Syst. Lett., 5 (1), p. 14; Oh, H., Park, S., Lee, G.M., Choi, J.K., Noh, S., Competitive data trading model with privacy valuation for multiple stakeholders in IoT data markets (2020) IEEE Internet Things J., 7 (4), pp. 3623-3639; (2018) 5G for Connected Industries and Automation, , 2nd edn; Ahokangas, P., Matinmikko-Blue, M., Yrjölä, S., Seppänen, V., Hämmäinen, H., Jurva, R., Latva-aho, M., Business models for local 5G micro operators (2019) IEEE Trans. Cognit. Commun. Netw., 5 (3), pp. 730-740; López, O.L.A., Alves, H., Souza, R.D., Montejo-Sánchez, S., Fernández, E.M.G., Latva-Aho, M., (2019) Massive Wireless Energy Transfer: Enabling Sustainable Iot Towards 6G Era, , arXiv; Interdonato, G., Björnson, E., Ngo, H.Q., Frenger, P., Larsson, E.G., Ubiquitous cell-free massive mimo communications (2019) EURASIP J. Wirel. Commun. Netw., 2019 (197), pp. 1-13; Yanikomeroglu, H., Integrated terrestrial/non-terrestrial 6g networks for ubiquitous 3d super-connectivity (2018) Proceedings of the 21St ACM International Conference on Modeling, pp. 3-4. , Montreal, QC, Canada, Analysis and Simulation of Wireless and Mobile Systems; Peltonen, E., Bennis, M., Capobianco, M., Debbah, M., Ding, A., Gil-Castiñeira, F., Jurmu, M., Yang, T., 6G White Paper on Edge Intelligence, ser (2020) 6G Research Visions, , http://urn.fi/urn:isbn:9789526226743, nr. 8. Oulu, Finland: University of Oulu, Online; Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I., Ambient backscatter communications: a contemporary survey (2018) IEEE Commun. Surv. Tutor., 20 (4), pp. 2889-2922; Duan, R., Jäntti, R., Yiğitler, H., Ruttik, K., On the achievable rate of bistatic modulated rescatter systems (2017) IEEE Trans. Veh. Technol., 66 (10), pp. 9609-9613; Wang, A., Iyer, V., Talla, V., Smith, J.R., Gollakota, S., Fm backscatter: Enabling connected cities and smart fabrics (2017) Proceedings of 14Th USENIX Conference on Networked Systems Design and Implementation, pp. 243-258. , USENIX Association, Boston, MA, USA; Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R., Ambient Backscatter: Wireless communication out of thin air Proceedings (Hong Kong, China, Aug, ACM SIGCOMM, 2013), pp. 39-50; Huang, Q., Mei, Y., Wang, W., Zhang, Q., Battery-free sensing platform for wearable devices: The synergy between two feet Proceedings (IEEE INFOCOM, San Francisco, USA, 2016); Ruttik, K., Duan, R., Jäntti, R., Han, Z., Does ambient backscatter communication need additional regulations? (2018) 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (Dyspan) (Seoul, South Korea, pp. 1-6; Debard, A., Clemente, A., Delaveaud, C., Three-element end-fire linear arrays (Super) directivity and gain optimization (2020) In Proceedings of 14Th European Conference on Antennas and Propagation (Eucap) (Copenhagen, Denmark, pp. 1-4; Frenger, P., Hederen, J., Hessler, M., Interdonato, G., (2017) Improved Antenna Arrangement for Distributed Massive MIMO, , patent, WO2018103897; López, O.L.A., Montejo-Sánchez, S., Souza, R.D., Alves, H., Papadias, C.B., (2020) On Csi-Free Multi-Antenna Schemes for Massive Wireless Energy Transfer, , arXiv; Chatterjee, B., Cao, N., Raychowdhury, A., Sen, S., Context-aware intelligence in resource-constrained IoT nodes: opportunities and challenges (2019) IEEE Des. Test, 36 (2), pp. 7-40; Andraud, M., Verhelst, M., From on-chip self-healing to self-adaptivity in analog/RF ICs: Challenges and opportunities (2018) In Proceedings of IEEE 24Th International Symposium on On-Line Testing and Robust System Design (IOLTS) (Platja d’Aro, Spain, pp. 131-134; Goetschalckx, K., Moons, B., Lauwereins, S., Andraud, M., Verhelst, M., Optimized hierarchical cascaded processing (2018) IEEE J. Emerg. Sel. Top. Circuits Syst., 8 (4), pp. 884-894; Basu, A., Acharya, J., Karnik, T., Liu, H., Li, H., Seo, J., Song, C., Low-power, adaptive neuromorphic systems: recent progress and future directions (2018) IEEE J. Emerg. Sel. Top. Circuits Syst., 8 (1), pp. 6-27; Jakovetić, D., Bajović, D., Vukobratović, D., Cooperative slotted aloha for multi-base station systems (2015) IEEE Trans. Commun, 63 (4), pp. 1443-1456; Munari, A., Clazzer, F., Liva, G., Heindlmaier, M., Multiple-relay slotted ALOHA: Performance analysis and bounds (2019) Corr; Liu, L., Larsson, E.G., Yu, W., Popovski, P., Stefanovic, C., de Carvalho, E., Sparse signal processing for grant-free massive connectivity: a future paradigm for random access protocols in the Internet of Things (2018) IEEE Signal Process. Mag., 35 (5), pp. 88-99; Chen, Y., Bayesteh, A., Wu, Y., Ren, B., Kang, S., Sun, S., Xiong, Q., Razavi, R., Toward the standardization of non-orthogonal multiple access for next generation wireless networks (2018) IEEE Commun. Mag., 56 (3), pp. 19-27; Yuan, Z., Hu, Y., Li, W., Dai, J., Blind multi-user detection for autonomous grant-free high-overloading multiple-access without reference signal (2018) Proceedings 87Th Vehicular Technology Conference, , VTC-Spring, Porto, Portugal; Yuan, Z., Li, W., Hu, Y., Tang, H., Dai, J., Ma, Y., (2019) Blind Multi-User Detection Based on Receive Beamforming for Autonomous Grant-Free High-Overloading Multiple Access, pp. 520-523. , 2019 IEEE 2nd 5G World Forum (5GWF); Yuan, Z., Li, W., Li, Z., Hu, Y., Ma, Y., (2020) Contention-Based Grant-Free Transmission with Independent Multi-Pilot Scheme, , arXiv; Berioli, M., Cocco, G., Liva, G., Munari, A., Modern random access protocols (2016) Found. Trends ® Netw, 10 (4), pp. 317-446; Casini, E., Gaudenzi, R.D., del Rio Herrero, O., Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access scheme for satellite access packet networks (2007) IEEE Trans. Wirel. Commun., 6, pp. 1408-1419; Paolini, E., Liva, G., Chiani, M., Coded slotted aloha: a graph-based method for uncoordinated multiple access (2015) IEEE Trans. Inf. Theory, 61 (12), pp. 6815-6832; Fengler, A., Jung, P., Caire, G., SPARCs and AMP for unsourced random access (2019) IEEE International Symposium on Information Theory (ISIT), pp. 2843-2847; Kowshik, S., Andreev, K., Frolov, A., Polyanskiy, Y., Energy efficient random access for the quasi-static fading MAC Proceedings (ISIT, p. 2019. , Paris, France; Purwita, A.A., Anwar, K., Massive multiway relay networks applying coded random access (2016) IEEE Trans. Commun., 64 (10), pp. 4134-4146; Coskun, M.C., Durisi, G., Jerkovits, T., Liva, G., Ryan, W., Stein, B., Steiner, F., Efficient error-correcting codes in the short blocklength regime (2019) Elsevier Phys. Commun., 34 (6), pp. 66-79; Xhemrishi, M., Coskun, M.C., Liva, G., Östman, J., Durisi, G., List decoding of short codes for communication over unknown fading channels (2019) Proceedings of 53Rd Annual Asilomar Conference on Signals, Systems, and Computers, , Pacific Grove, USA; Yuan, Z., Hu, Y., Ma, Y., Li, W., Li, Z., Autonomous grant-free high overloading multiple access based on conjugated data symbols (2020) 2020 IEEE International Conference on Communications (ICC), Workshops, , Virtual Conference; Clazzer, F., Matuz, B., Jayasooriya, S., Shirvanimoghaddam, M., Johnson, S.J., Protograph LDPC code design for asynchronous random access (2019) MDPI Algorithms, 12 (8), pp. 170-192; Clazzer, F., Kissling, C., Marchese, M., Enhancing contention resolution ALOHA using combining techniques (2018) IEEE Trans. Commun., 66 (6), pp. 2576-2587; Karadag, G., Gul, R., Sadi, Y., Coleri, S., QoS-constrained semi-persistent scheduling of machine type communications in cellular networks (2019) IEEE Trans. Wirel. Commun., 18 (5), pp. 2737-2750; Sadi, Y., Erkucuk, S., Panayirci, E., Flexible Physical Layer Based Resource Allocation for Machine Type Communications Towards 6G, in Proceedings of 2Nd 6G Wireless Summit 2020, , (Levi, Finland, 2020); Bennis, M., Debbah, M., Poor, H.V., Ultra-reliable and low-latency wireless communication: tail, risk, and scale (2018) Proc. IEEE, 106 (10), pp. 1834-1853; Sliwa, B., Falkenberg, R., Wietfeld, C., Towards Cooperative Data Rate Prediction for Future Mobile and Vehicular 6G Networks, in Proceedings of 2Nd 6G Wireless Summit, , Levi, Finland, 2020); Li, R., Towards a new internet for the year 2030 and beyond (2018) Proceedings of 3Rd Annual ITU IMT-2020/5G Workshop Demo Day, pp. 1-21; Messenger, J.L., Time-sensitive networking: an introduction (2018) IEEE Commun. Standards Mag., 2 (2), pp. 29-33; Kostrzewa, A., Saidi, S., Ecco, L., Ernst, R., Dynamic admission control for real-time networks-on-chips (2016) 21St Asia and South Pacific Design Automation Conference, ASP-DAC, pp. 719-724. , https://doi.org/10.1109/ASPDAC.2016.7428096, IEEE; Ravi, N., Shalinie, S.M., Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture (2020) IEEE Internet Things J., 7 (4), pp. 3559-3570; Bisson, P., Waryet, J., 5G PPP Phase1 Security Landscape, 5G PPP Security Group White Paper (2017); Osorio, D.P.M., Olivo, E.E.B., Alves, H., Latva-Aho, M., Safeguarding MTC at the physical layer: potentials and challenges (2020) IEEE Access, 8, pp. 101437-101447; Aydin, Y., Kurt, G.K., Ozdemir, E., Yanikomeroglu, H., A flexible and lightweight group authentication scheme (2020) IEEE Internet Things J; (2016) Edefining Cybersecurity in a Digital Environment, , research Report; Kuhn, R., Yaga, D., Voas, J., Rethinking distributed ledger technology (2019) Computer, 52 (2), pp. 68-72; Dedeoglu, V., Jurdak, R., Putra, G.D., Dorri, A., Kanhere, S.S., A Trust Architecture for Blockchain in Iot, in Proceedings of the 16Th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 190-199. , MobiQuitous ’19) (Texas, USA, Nov, Houston, 2019)

Indexed by Scopus

Leave a Comment