Local well-posedness of Boussinesq equations for MHD convection with fractional thermal diffusion in sobolev space Hs(Rn)×Hs+1−ϵ(Rn)×Hs+α−ϵ(Rn)

Ghani M.

School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, China; Faculty of Advanced Technology and Multidiscipline, Airlangga University, Surabaya, 60115, Indonesia


Abstract

In this paper, we study the local well-posedness of the Boussinesq equation for MHD convection with fractional thermal diffusion in Hs(Rn)×Hs+1−ϵ(Rn)×Hs+α−ϵ(Rn) with [Formula presented] and any small enough ϵ>0 such that [Formula presented] and [Formula presented]. We present here the fractional operator (−Δ)αθ for α>1 which is estimated by using Littlewood–Paley projection. © 2021 Elsevier Ltd

Boussinesq-MHD; Fractional thermal diffusion; Local well-posedness; Sobolev space


Journal

Nonlinear Analysis: Real World Applications

Publisher: Elsevier Ltd

Volume 62, Issue , Art No 103355, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106549230&doi=10.1016%2fj.nonrwa.2021.103355&partnerID=40&md5=64e966dbd9bfd6cce806f2a02acd285d

doi: 10.1016/j.nonrwa.2021.103355

Issn: 14681218

Type:


References

Kulikovskiy, A.G., Lyubimov, G.A., Magnetohydrodynamics (1965), Addison-Wesley Reading, Massachusetts; Laudau, L.D., Lifshitz, E.M., Electrodynamics of Continuous Media (1984), second ed. Pergamon New York; Pratt, J., Busse, A., Müller, W.C., Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence (2013) Astronom. Astrophys., 557, p. A76; Temem, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), second ed. Springer-Verlag, New York, Inc; Mulone, G., Rionero, S., Necessary and sufficient conditions for nonlinear stability in the magnetic Bènard problem (2003) Arch. Ration. Mech. Anal., 166, pp. 197-218; Yamazaki, K., Global regularity of generalized magnetic Bènard problem (2017) Math. Methods Appl. Sci., 40, pp. 2013-2033; Zhou, Y., Fan, J., Nakamura, G., Global Cauchy problem for a 2D magnetic Bènard problem with zero thermal conductivity (2013) Appl. Math. Lett., 26, pp. 627-630; Bian, D., Gui, G., On 2-D Boussinesq equations for MHD convection with stratification effects (2016) J. Differential Equations, 261, pp. 1669-1711; Bian, D., Liu, J., Initial–boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects (2017) J. Differential Equations, 263, pp. 8074-8101; Bian, D., Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection (2016) Discret. Contin. Dyn. Syst. Ser. S, 9 (6), pp. 1591-1611; Zhai, X., Chen, Z., Global well-posedness for the MHD-Boussinesq system with the temperature-dependent viscosity (2018) Nonlinear Anal. RWA, 44, pp. 260-282; Larios, A., Pei, Y., On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion (2016) J. Differential Equations, 263, pp. 1419-1450; Bian, D., Pu, X., Global smooth axisymmetric solutions of the Boussinesq equations for magnetohydrodynamics convection (2020) J. Math. Fluid Mech., 22 (1); Liu, H., Bian, D., Pu, X., Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion (2019) Z. Angew. Math. Phys., 70 (3), pp. 1-19. , 70:81; Dai, M., Local well-posedness for the Hall-MHD system in optimal Sobolev spaces (2021) J. Differential Equations, 289, pp. 159-181; Dai, M., Local well-posedness of the Hall-MHD system in Hs(Rn) with [Formula presented] (2020) Mathematische Nachrichten, 293, pp. 67-78; Chae, D., Wan, R., Wu, J., Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion (2015) J. Math. Fluid Mech., 17, pp. 627-638; Hajer, B., Chemin, J., Danchin, R., (2011) Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehrender Mathematischen Wissenschaften, 343. , Springer Heidelberg; Lemarie Rieusset, P.G., (2002) Recent Developments in the Navier–Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, 431. , Chapman and Hall/CRC Boca Raton, FL; Loukas, G., Modern Fourier Analysis (2009) Graduate Texts in Mathematics, 250. , second ed. Springer New York; Bahouri, H., Chemin, J.-Y., Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations (2011), Springer-Verlag Berlin Heidelberg

Indexed by Scopus

Leave a Comment