Large-scale screening of natural genetic resource in the hydrocarbon-producing microalga Botrycoccus braunii identified novel fast-growing strains

Kawamura K., Nishikawa S., Hirano K., Ardianor A., Nugroho R.A., Okada S.

Department of Environmental Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka, 535-8585, Japan; University of Palangka Raya, Palangkaraya, Indonesia; Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, East Kalimantan, Indonesia; Research Center of Natural Products From Tropical Rainforest (PUI PT OKTAL), Mulawarman University, Samarinda, East Kalimantan, Indonesia; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan


Algal biofuel research aims to make a renewable, carbon–neutral biofuel by using oil-producing microalgae. The freshwater microalga Botryococcus braunii has received much attention due to its ability to accumulate large amounts of petroleum-like hydrocarbons but suffers from slow growth. We performed a large-scale screening of fast-growing strains with 180 strains isolated from 22 ponds located in a wide geographic range from the tropics to cool-temperate. A fast-growing strain, Showa, which recorded the highest productivities of algal hydrocarbons to date, was used as a benchmark. The initial screening was performed by monitoring optical densities in glass tubes and identified 9 wild strains with faster or equivalent growth rates to Showa. The biomass-based assessments showed that biomass and hydrocarbon productivities of these strains were 12–37% and 11–88% higher than that of Showa, respectively. One strain, OIT-678 established a new record of the fastest growth rate in the race B strains with a doubling time of 1.2 days. The OIT-678 had 36% higher biomass productivity, 34% higher hydrocarbon productivity, and 20% higher biomass density than Showa at the same cultivation conditions, suggesting the potential of the new strain to break the record for the highest productivities of hydrocarbons. © 2021, The Author(s).


Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 7368, Page – , Page Count

Journal Link:

doi: 10.1038/s41598-021-86760-8

Issn: 20452322

Type: All Open Access, Gold, Green


Chisti, Y., Biodiesel from microalgae (2007) Biotechnol. Adv., 25, pp. 294-306. , COI: 1:CAS:528:DC%2BD2sXjslGksbo%3D, PID: 17350212; Shuba, E.S., Kifle, D., Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review (2018) Renew. Sustain. Energy Rev., 81, pp. 743-755. , COI: 1:CAS:528:DC%2BC2sXhtl2kurfL; Wijffels, R.H., Barbosa, M.J., An outlook on microalgal biofuels (2010) Science, 329, pp. 796-799. , COI: 1:CAS:528:DC%2BC3cXpvV2iu78%3D, PID: 20705853; Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., (1998) Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae, ,, Close-Out Report. Golden, CO: National Renewable Energy Lab; Suparmaniam, U., Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review (2019) Renew. Sustain. Energy Rev., 115, p. 109361. , COI: 1:CAS:528:DC%2BC1MXhsleitL%2FK; Johnson, T.J., Photobioreactor cultivation strategies for microalgae and cyanobacteria (2018) Biotechnol. Prog., 34, pp. 811-827. , COI: 1:CAS:528:DC%2BC1cXltlSrurs%3D, PID: 29516646; Banerjee, S., Banerjee, S., Ghosh, A.K., Das, D., Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective (2020) Renew. Sustain. Energy Rev., 133, p. 110155. , COI: 1:CAS:528:DC%2BB3cXhsFKgtrjK; Ghosh, A., Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review (2016) Energy Conv. Manage., 113, pp. 104-118. , COI: 1:CAS:528:DC%2BC28Xhs1Klu74%3D; Slocombe, S., Unlocking nature’s treasure-chest: screening for oleaginous algae (2015) Sci. Rep., 5, p. 9844. , PID: 26202369; Nascimento, I.A., Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria (2013) Bioenerg. Res., 6, pp. 1-13. , COI: 1:CAS:528:DC%2BC3sXit1egsrs%3D; Pereira, H., Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae (2011) Biotechnol. Biofuels, 4, p. 61. , COI: 1:CAS:528:DC%2BC38XjslOls7g%3D, PID: 22192119; Katayama, T., Isolation of lipid-rich marine microalgae by flow cytometric screening with Nile Red staining (2019) Aquacult. Int., 27, pp. 509-518; Huang, A.T., Goh, J.L., Ahmadzadeh, H., Murry, M.A., A rapid sampling technique for isolating highly productive lipid-rich algae strains from environmental samples (2019) Biofuel Res. J., 21, pp. 920-926; Banerjee, A., Sharma, R., Chisti, Y., Banerjee, U.C., Botryococcus braunii: A renewable source of hydrocarbons and other chemicals (2002) Crit. Rev. Biotechnol., 22, pp. 245-279. , COI: 1:CAS:528:DC%2BD3sXhtlKisbg%3D, PID: 12405558; Metzger, P., Largeau, C., Botryococcus braunii: a rich source for hydrocarbons and related ether lipids (2005) Appl. Microbiol. Biotechnol., 66, pp. 486-496. , COI: 1:CAS:528:DC%2BD2MXkslek, PID: 15630516; Lee, S.Y., Kim, H.M., Cheon, S., Metabolic engineering for the production of hydrocarbon fuels (2015) Curr. Opin. Biotechnol., 33, pp. 15-22. , COI: 1:CAS:528:DC%2BC2cXhslags7fK, PID: 25445543; Yoshida, M., Tanabe, Y., Yonezawa, N., Watanabe, M.M., Energy innovation potential of oleaginous microalgae (2012) Biofuels, 3, pp. 761-781. , COI: 1:CAS:528:DC%2BC38XhsleltL3F; Jackson, B.A., Bahri, P.A., Moheimani, N.R., Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii (2017) Renew. Sustain. Energy Rev., 79, pp. 1229-1240. , COI: 1:CAS:528:DC%2BC2sXpt1Cjs7w%3D; Griehl, C., Kleinert, C., Griehl, C., Bieler, S., Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii (2015) J. Appl. Phycol., 27, pp. 1833-1843. , COI: 1:CAS:528:DC%2BC2cXitV2ntL%2FP; Griffiths, M.J., Harrison, S.T.L., Lipid productivity as a key characteristic for choosing algal species for biodiesel production (2009) J. Appl. Phycol., 21, pp. 493-507. , COI: 1:CAS:528:DC%2BD1MXhtF2hsLrP; Singh, S.P., Singh, P., Effect of temperature and light on the growth of algae species: A review (2015) Renew. Sustain. Energy Rev., 50, pp. 431-444. , COI: 1:CAS:528:DC%2BC2MXovVChtLg%3D; Yoshimura, T., Okada, S., Honda, M., Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: Optimal CO2, salinity, temperature, and irradiance conditions (2013) Bioresour. Technol., 133, pp. 232-239. , COI: 1:CAS:528:DC%2BC3sXlsVGgtb0%3D, PID: 23428820; Khatri, W., Hendrix, R., Niehaus, T., Chappell, J., Curtis, W.R., Hydrocarbon production in high density Botryococcus braunii race B continuous culture (2014) Biotechnol. Bioeng., 111, pp. 493-503. , COI: 1:CAS:528:DC%2BC3sXhvVWntLrF, PID: 24122424; Lozoya-Gloria, E., Morales-de la Cruz, X., Ozawa-Uyeda, T.A., The Colonial Microalgae Botryococcus braunii as Biorefinery (2019) Microalgae: From Physiology to Application, p. 88206. , Vítová M, (ed), IntechOpen; Nonomura, M., Botryococcus braunii var. showa (Chlorophyceae) from Berkeley, California, United States of America (1988) Jpn. J. Phycol., 36, pp. 285-291; Gouveia, J.D., Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content (2017) J. Biotechnol., 248, pp. 77-86. , COI: 1:CAS:528:DC%2BC2sXlt1CjtL4%3D, PID: 28336295; Moutel, B., Development of a screening procedure for the characterization of Botryococcus braunii strains for biofuel application (2016) Process Biochem., 51, pp. 1855-1865. , COI: 1:CAS:528:DC%2BC28XnslGqsbo%3D; Lee, C.-H., Chae, H.-S., Lee, S.-H., Kim, H.S., Growth characteristics and lipid content of three Korean isolates of Botryococcus braunii (Trebouxiophyceae) (2015) J. Ecol. Environ., 38, pp. 67-74; Eroglu, E., Okada, S., Melis, A., Hydrocarbon productivities in different Botryococcus strains: Comparative methods in product quantification (2011) J. Appl. Phycol., 23, pp. 763-775. , COI: 1:CAS:528:DC%2BC3MXpsFKhuro%3D, PID: 21909190; Li, Y., Qin, J.G., Comparison of growth and lipid content in three Botryococcus braunii strains (2005) J. Appl. Phycol., 17, pp. 551-556. , COI: 1:CAS:528:DC%2BD28XhtVait7s%3D; Hirano, K., Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3 (2019) Sci. Rep., 9, p. 16974. , PID: 31740707, COI: 1:CAS:528:DC%2BC1MXit1Snu7vI; Kawamura, K., Hirano, K., Ardianor, Nuguroho, R.A., The oil-producing microalga Botryococcus braunii: A method for isolation from the natural environments and perspectives on roles of ecological studies in algal biofuel production (2020) J. Ecosyst. Ecogr., 10, p. 274; Khichi, S.S., Anis, A., Ghosh, S., Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes (2018) Biochem. Eng. J., 134, pp. 44-56. , COI: 1:CAS:528:DC%2BC1cXlt1Ojt74%3D; Kawachi, M., Tanoi, T., Demura, M., Kaya, K., Watanabe, M.M., Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii (2012) Algal Res., 1, pp. 114-119; Song, L., Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta) (2012) Plos One, p. e41459; Van den Berg, T.E., Chukhutsina, V.U., van Amerongen, H., Croce, R., van Oort, B., Light acclimation of the colonial green alga Botryococcus braunii strain Showa (2019) Plant Physiol., 179, pp. 1132-1143. , PID: 30651303, COI: 1:CAS:528:DC%2BC1MXpt1CrtbY%3D; Rodolfi, L., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor (2009) Biotechnol. Bioeng., 102, pp. 100-112. , COI: 1:CAS:528:DC%2BD1MXitlSk, PID: 18683258; Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review (2011) Bioresour. Technol., 102, pp. 71-81. , COI: 1:CAS:528:DC%2BC3cXht1Cgsb7M, PID: 20674344; Chiu, S.Y., Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration (2009) Bioresour. Technol., 100, pp. 833-838. , COI: 1:CAS:528:DC%2BD1cXht1OksbfE, PID: 18722767; Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q., Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans (2009) Appl. Microbiol. Biotechnol., 81, pp. 629-636. , COI: 1:CAS:528:DC%2BD1cXhsVCntbzK; Ho, S.H., Chen, C.Y., Chang, J.S., Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N (2012) Bioresour. Technol., 113, pp. 244-252. , COI: 1:CAS:528:DC%2BC38XlvFWntb4%3D, PID: 22209130; Pribyl, P., Cepak, V., Zachleder, V., Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris (2012) Appl. Microbiol. Biotechnol., 94, pp. 549-561. , COI: 1:CAS:528:DC%2BC38XksVektLc%3D, PID: 22361856; Sun, Z., Zhou, Z.G., Gerken, H., Chen, F., Liu, J., Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production (2012) Bioresour. Technol., 184, pp. 53-62. , COI: 1:CAS:528:DC%2BC2cXhsFyrtLrK; Kawamura, K., Determining the optimal cultivation strategy for microalgae for biodiesel production using flow cytometric monitoring and mathematical modeling (2018) Biomass Bioener., 117, pp. 24-31. , COI: 1:CAS:528:DC%2BC1cXhtlSqsLjK; Okada, S., Murakami, M., Yamaguchi, K., Hydrocarbon production by the Yayoi, a new strain of the green microalga Botryococcus braunii (1997) Appl. Biochem. Biotechnol., 67, pp. 79-86. , COI: 1:CAS:528:DyaK2sXntVOhsr8%3D; Okada, S., Devarenne, T.P., Murakami, M., Abe, H., Chappell, J., Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, Race B (2004) Arch. Biochem. Biophys., 422, pp. 110-118. , COI: 1:CAS:528:DC%2BD2cXjtVamtA%3D%3D, PID: 14725863; Metzger, P., Allard, B., Casadevall, E., Berkaloff, C., Coute, A., Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon (1990) J. Phycol., 26, pp. 258-266. , COI: 1:CAS:528:DyaK3MXpslymug%3D%3D; Zhang, H., Wang, W., Li, Y., Yang, W., Shen, G., Mixotrophic cultivation of Botryococcus braunii (2011) Biomass Bioener., 35, pp. 1710-1715. , COI: 1:CAS:528:DC%2BC3MXkt12gsLo%3D; Chen, P., The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation (2013) Bioresour. Technol., 138, pp. 95-100. , COI: 1:CAS:528:DC%2BC3sXnvV2qtLg%3D; Berrios, H., Zapata, M., Rivas, M., A method for genetic transformation of Botryococcus braunii using a cellulase pretreatment (2016) J. Appl. Phycol., 28, pp. 201-208. , COI: 1:CAS:528:DC%2BC2MXnsFChsrc%3D; Browne, D.R., Draft Nuclear Genome Sequence of the Liquid Hydrocarbon-Accumulating Green Microalga Botryococcus braunii Race B (Showa) (2017) Genome Announc., 5, pp. e00215-e217. , PID: 28428306; Tanabe, Y., A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii (2015) Sci. Rep., 5, p. 10467. , PID: 26130609; Blifernez-Klassen, O., Phytoplankton consortia as a blueprint for mutually beneficial eukaryote-bacteria ecosystems based on the biocoenosis of Botryococcus consortia (2021) Sci. Rep., 11, p. 1726. , COI: 1:CAS:528:DC%2BB3MXhvVShsLk%3D, PID: 33462312; Shiho, M., Business evaluation of a green microalgae Botryococcus braunii oil production system (2012) Proc. Environ. Sci., 15, pp. 90-109. , COI: 1:CAS:528:DC%2BC38XhtlWhurvL; Cabanelas, I.T.D., From waste to energy: Microalgae production in wastewater and glycerol (2013) Appl. Energy, 109, pp. 283-290. , COI: 1:CAS:528:DC%2BC3sXpsFOjtL4%3D; Areco, M.M., Haug, E., Curutchet, G., Studies on bioremediation of Zn and acid waters using Botryococcus braunii (2018) J. Environ. Chem. Eng., 6, pp. 3849-3859. , COI: 1:CAS:528:DC%2BC1cXhtFWisLvF; Xie, P., Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae (2020) Water Res., 172, p. 115475. , COI: 1:CAS:528:DC%2BB3cXht1yksL8%3D, PID: 31972413; Cheng, P., High-value chemicals from Botryococcus braunii and their current applications: A review (2019) Bioresour. Technol., 291, p. 121911. , COI: 1:CAS:528:DC%2BC1MXhsFWlsL7F, PID: 31383389; Rosen, M.A., Environmental sustainability tools in the biofuel industry (2018) Biofuel Res. J., 17, pp. 751-752; Dieters, M.J., White, T.L., Littell, R.C., Hedge, G.R., Application of approximate variances of variance-components and their ratios in genetic tests (1995) Theor. Appl. Genet., 91, pp. 15-24. , COI: 1:STN:280:DC%2BC2c7gvFCgsQ%3D%3D, PID: 24169662; Pérez-Mora, L.S., Matsudo, M.C., Cezare-Gomes, E.A., Carvalho, J., An investigation into producing Botryococcus braunii in a tubular photobioreactor (2016) J. Chem. Technol. Biotechnol., 91, pp. 3053-3060. , COI: 1:CAS:528:DC%2BC28Xks1ChsLk%3D; Casadevall, E., Studies on batch and continuous cultures of Botryococcus braunii: Hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition (1985) Biotechnol. Bioeng., 27, pp. 286-295. , COI: 1:CAS:528:DyaL2MXhsVOms7w%3D, PID: 18553671; Tran, H.L., Kwon, J.S., Kim, Z.H., Oh, Y., Lee, C.G., Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572 (2010) Biotechnol. Bioprocess Eng., 15, pp. 277-284. , COI: 1:CAS:528:DC%2BC3cXlslensbc%3D; Yeesang, C., Cheirsilp, B., Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation (2014) Appl. Biochem. Biotechnol., 174, pp. 116-129. , COI: 1:CAS:528:DC%2BC2cXhtFShtbjF, PID: 24989454

Indexed by Scopus

Leave a Comment