Large-scale genomic analysis reveals the genetic cost of chicken domestication

Wang M.-S., Zhang J.-J., Guo X., Li M., Meyer R., Ashari H., Zheng Z.-Q., Wang S., Peng M.-S., Jiang Y., Thakur M., Suwannapoom C., Esmailizadeh A., Hirimuthugoda N.Y., Zein M.S.A., Kusza S., Kharrati-Koopaee H., Zeng L., Wang Y.-M., Yin T.-T., Yang M.-M., Li M.-L., Lu X.-M., Lasagna E., Ceccobelli S., Gunwardana H.G.T.N., Senasig T.M., Feng S.-H., Zhang H., Bhuiyan A.K.F.H., Khan M.S., Silva G.L.L.P., Thuy L.T., Mwai O.A., Ibrahim M.N.M., Zhang G., Qu K.-X., Hanotte O., Shapiro B., Bosse M., Wu D.-D., Han J.-L., Zhang Y.-P.

State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States; College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, The Cooperative Innovation Center for Sustainable Pig Production, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Zoological Survey of India, New Alipore, Kolkata, West Bengal 700053, India; School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand; Unit of Excellence on Biodiversity and Natural Resources Management, University of Phayao, Phayao, 56000, Thailand; Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran; Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka; Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, H-4032, Hungary; Institute of Biotechnology, School of Agriculture, Shiraz University, P.O. Box 1585, Shiraz, Iran; Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China; Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, 06123, Italy; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China; Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture of China, Beijing, 100193, China; Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan; Department of Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka; National Institute of Animal Husbandry, Hanoi, Viet Nam; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya; China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China; Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, DK-1870, Denmark; Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom; Livestock Genetics Program, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia; Wageningen University & Research – Animal Breeding and Genomics, Wageningen, 6708 PB, Netherlands; State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China


Background: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. Results: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the “cost of domestication” hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. Conclusion: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection. © 2021, The Author(s).

Bottleneck; Deleterious mutation; Domestic chicken; Domestication; Genetic load


BMC Biology

Publisher: BioMed Central Ltd

Volume 19, Issue 1, Art No 118, Page – , Page Count

Journal Link:

doi: 10.1186/s12915-021-01052-x

Issn: 17417007

Type: All Open Access, Gold, Green


Bosse, M., Megens, H.J., Derks, M.F.L., de Cara, A.M.R., Groenen, M.A.M., Deleterious alleles in the context of domestication, inbreeding, and selection (2019) Evol Appl., 12 (1), pp. 6-17; Makino, T., Rubin, C.J., Carneiro, M., Axelsson, E., Andersson, L., Webster, M.T., Elevated proportions of deleterious genetic variation in domestic animals and plants (2018) Genome Biol Evol., 10 (1), pp. 276-290; Agrawal, A.F., Whitlock, M.C., Inferences about the distribution of dominance drawn from yeast gene knockout data (2011) Genetics., 187 (2), pp. 553-566; Groß, C., Bortoluzzi, C., de Ridder, D., Megens, H.-J., Groenen, M.A.M., Reinders, M., (2020) Evolutionarily conserved non-protein-coding regions in the chicken genome harbor functionally important variation, ,, bioRxiv; Carneiro, M., Rubin, C.J., Di Palma, F., Albert, F.W., Alfoldi, J., Martinez Barrio, A., Pielberg, G., Turner-Maier, J., Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication (2014) Science (New York, NY), 345 (6200), pp. 1074-1079; Gerbault, P., Allaby, R.G., Boivin, N., Rudzinski, A., Grimaldi, I.M., Pires, J.C., Climer Vigueira, C., Thomas, M.G., Storytelling and story testing in domestication (2014) Proc Natl Acad Sci U S A., 111 (17), pp. 6159-6164; Frantz, L.A.F., Bradley, D.G., Larson, G., Orlando, L., Animal domestication in the era of ancient genomics (2020) Nat Rev Genet, 21 (8), pp. 449-460; Larson, G., Fuller, D.Q., The evolution of animal domestication (2014) Annu. Rev. Ecol. Evol. Syst., 45 (1), pp. 115-136; Gaut, B.S., Seymour, D.K., Liu, Q., Zhou, Y., Demography and its effects on genomic variation in crop domestication (2018) Nat Plants., 4 (8), pp. 512-520; Alberto, F.J., Boyer, F., Orozco-terWengel, P., Streeter, I., Servin, B., de Villemereuil, P., Benjelloun, B., Pompanon, F., Convergent genomic signatures of domestication in sheep and goats (2018) Nat Commun, 9 (1), p. 813; Henn, B.M., Botigue, L.R., Bustamante, C.D., Clark, A.G., Gravel, S., Estimating the mutation load in human genomes (2015) Nat Rev Genet., 16 (6), pp. 333-343; Schubert, M., Jonsson, H., Chang, D., Der Sarkissian, C., Ermini, L., Ginolhac, A., Albrechtsen, A., Petersen, B., Prehistoric genomes reveal the genetic foundation and cost of horse domestication (2014) Proc Natl Acad Sci U S A., 111 (52), pp. E5661-E5669; Marsden, C.D., Ortega-Del Vecchyo, D., O’Brien, D.P., Taylor, J.F., Ramirez, O., Vila, C., Marques-Bonet, T., Lohmueller, K.E., Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs (2016) Proc Natl Acad Sci U S A., 113 (1), pp. 152-157; Liu, Q., Zhou, Y., Morrell, P.L., Gaut, B.S., Deleterious variants in Asian rice and the potential cost of domestication (2017) Mol Biol Evol., 34 (4), pp. 908-924. ,; Nabholz, B., Sarah, G., Sabot, F., Ruiz, M., Adam, H., Nidelet, S., Ghesquière, A., Glémin, S., Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima) (2014) Mol Ecol., 23 (9), pp. 2210-2227; Koenig, D., Jimenez-Gomez, J.M., Kimura, S., Fulop, D., Chitwood, D.H., Headland, L.R., Kumar, R., Maloof, J.N., Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato (2013) Proc Natl Acad Sci U S A., 110 (28), pp. E2655-E2662; Lu, J., Tang, T., Tang, H., Huang, J., Shi, S., Wu, C.I., The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication (2006) Trends Genet., 22 (3), pp. 126-131; Brown, T.A., Is the domestication bottleneck a myth? (2019) Nat Plants., 5 (4), pp. 337-338; Frantz, L.A., Larson, G., A genetic perspective on the domestication continuum (2018) Hybrid Communities: Biosocial Approaches to Domestication and Other Trans-Species Relationships: Taylor & Francis, ,; Frantz, L.A., Schraiber, J.G., Madsen, O., Megens, H.J., Cagan, A., Bosse, M., Paudel, Y., Groenen, M.A., Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes (2015) Nat Genet., 47 (10), pp. 1141-1148; Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., Simoes, Z.L., De la Rua, P., A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera (2014) Nat Genet., 46 (10), pp. 1081-1088; Rubin, C.J., Zody, M.C., Eriksson, J., Meadows, J.R., Sherwood, E., Webster, M.T., Jiang, L., Ka, S., Whole-genome resequencing reveals loci under selection during chicken domestication (2010) Nature., 464 (7288), pp. 587-591; Qanbari, S., Rubin, C.J., Maqbool, K., Weigend, S., Weigend, A., Geibel, J., Kerje, S., Brisbin, I.L., Jr., Genetics of adaptation in modern chicken (2019) PLoS Genet., 15 (4); Bortoluzzi, C., Bosse, M., Derks, M.F.L., Crooijmans, R., Groenen, M.A.M., Megens, H.J., The type of bottleneck matters: insights into the deleterious variation landscape of small managed populations (2020) Evol Appl., 13 (2), pp. 330-341; Larson, G., Burger, J., A population genetics view of animal domestication (2013) Trends Genet., 29 (4), pp. 197-205; Guo, X., He, X.X., Chen, H., Wang, Z.C., Li, H.F., Wang, J.X., Wang, M.S., Jiang, R.S., Revisiting the evolutionary history of domestic and wild ducks based on genomic analyses (2021) Zool Res, 42 (1), pp. 43-50; Wang, M.S., Thakur, M., Peng, M.S., Jiang, Y., Frantz, L.A.F., Li, M., Zhang, J.J., Zhang, Y.P., 863 genomes reveal the origin and domestication of chicken (2020) Cell Res., 30 (8), pp. 693-701; Fan, Z., Silva, P., Gronau, I., Wang, S., Armero, A.S., Schweizer, R.M., Ramirez, O., Ortega Del-Vecchyo, D., Worldwide patterns of genomic variation and admixture in gray wolves (2016) Genome Res., 26 (2), pp. 163-173; Zhang, Z., Khederzadeh, S., Li, Y., Deciphering the puzzles of dog domestication (2020) Zool Res, 41 (2), pp. 97-104; Zeder, M.A., The origins of agriculture in the Near East (2011) Curr Anthropol., 52 (S4), pp. S221-S235; Zhang, Y., Colli, L., Barker, J.S.F., Asian water buffalo: domestication, history and genetics (2020) Anim Genet., 51 (2), pp. 177-191; Guo, X., Wang, Z.C., Wang, S., Li, H.F., Suwannapoom, C., Wang, J.X., Zhang, C., Jiang, R.S., Genetic signature of hybridization between Chinese spot-billed ducks and domesticated ducks (2020) Anim Genet., 51 (6), pp. 866-875; Wang, M.S., Wang, S., Li, Y., Jhala, Y., Thakur, M., Otecko, N.O., Si, J.F., Wu, D.D., Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids (2020) Mol Biol Evol., 37 (9), pp. 2616-2629; Lawler, A., (2014) Why Did the Chicken Cross the World, , New York, Atria Books; Lawal, R.A., Martin, S.H., Vanmechelen, K., Vereijken, A., Silva, P., Al-Atiyat, R.M., Aljumaah, R.S., Zhang, Y.P., The wild species genome ancestry of domestic chickens (2020) BMC Biol., 18 (1), p. 13; Collias, N.E., Saichuae, P., Ecology of the red jungle fowl in Thailand and Malaya with reference to the origin of domestication (1967) Nat Hist Bull Siam Soc., 22, pp. 189-209; Groenen, M.A., Archibald, A.L., Uenishi, H., Tuggle, C.K., Takeuchi, Y., Rothschild, M.F., Rogel-Gaillard, C., Megens, H.J., Analyses of pig genomes provide insight into porcine demography and evolution (2012) Nature., 491 (7424), pp. 393-398; Li, H., Durbin, R., Inference of human population history from individual whole-genome sequences (2011) Nature., 475 (7357), pp. 493-496; Nadachowska-Brzyska, K., Burri, R., Smeds, L., Ellegren, H., PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers (2016) Mol Ecol., 25 (5), pp. 1058-1072; Luo, W., Luo, C., Wang, M., Guo, L., Chen, X., Li, Z., Zheng, M., Nie, Q., Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken (2020) Sci Rep., 10 (1), p. 14532; Li, D., Li, Y., Li, M., Che, T., Tian, S., Chen, B., Zhou, X., Li, M., Population genomics identifies patterns of genetic diversity and selection in chicken (2019) BMC Genomics., 20 (1), p. 263; Nam, K., Mugal, C., Nabholz, B., Schielzeth, H., Wolf, J.B., Backström, N., Künstner, A., Ponting, C.P., Molecular evolution of genes in avian genomes (2010) Genome Biol, 11 (6), p. R68; Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G., Ellegren, H., Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences (2015) Curr Biol., 25 (10), pp. 1375-1380; Schiffels, S., Durbin, R., Inferring human population size and separation history from multiple genome sequences (2014) Nat Genet., 46 (8), pp. 919-925; Terhorst, J., Kamm, J.A., Song, Y.S., Robust and scalable inference of population history from hundreds of unphased whole genomes (2017) Nat Genet., 49 (2), pp. 303-309; Bosse, M., Megens, H.J., Madsen, O., Frantz, L.A., Paudel, Y., Crooijmans, R.P., Groenen, M.A., Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations (2014) Mol Ecol., 23 (16), pp. 4089-4102; Orozco-terWengel, P.A., Bruford, M.W., Mixed signals from hybrid genomes (2014) Mol Ecol., 23 (16), pp. 3941-3943; Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H., Bustamante, C.D., Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data (2009) PLoS Genet., 5 (10); Lohmueller, K.E., Bustamante, C.D., Clark, A.G., The effect of recent admixture on inference of ancient human population history (2010) Genetics., 185 (2), pp. 611-622; Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., Chan, A.P., Predicting the functional effect of amino acid substitutions and indels (2012) PloS One., 7 (10); Axelsson, E., Webster, M.T., Smith, N.G., Burt, D.W., Ellegren, H., Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes (2005) Genome Res., 15 (1), pp. 120-125; Meseret, S., A review of poultry welfare in conventional production system (2016) Livest. Res. Rural. Dev., 28, p. 12; Hirsch, V., (2003) Legal Protections of the Domestic Chicken in the United States and Europe; Loog, L., Thomas, M.G., Barnett, R., Allen, R., Sykes, N., Paxinos, P.D., Lebrasseur, O., Eriksson, A., Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices (2017) Mol Biol Evol., 34 (8), pp. 1981-1990; Pan, S., Lin, Y., Liu, Q., Duan, J., Lin, Z., Wang, Y., Wang, X., Zhan, X., Convergent genomic signatures of flight loss in birds suggest a switch of main fuel (2019) Nat Commun., 10 (1), p. 2756; Wang, M.S., Zhang, R.W., Su, L.Y., Li, Y., Peng, M.S., Liu, H.Q., Zeng, L., Yao, Y.G., Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication (2016) Cell Res., 26 (5), pp. 556-573; Wang, M.S., Huo, Y.X., Li, Y., Otecko, N.O., Su, L.Y., Xu, H.B., Wu, S.F., Zhang, Y.P., Comparative population genomics reveals genetic basis underlying body size of domestic chickens (2016) J Mol Cell Biol., 8 (6), pp. 542-552; Abe, E., Marians, R.C., Yu, W., Wu, X.B., Ando, T., Li, Y., Iqbal, J., Zaidi, M., TSH is a negative regulator of skeletal remodeling (2003) Cell., 115 (2), pp. 151-162; Grottesi, A., Gabbianelli, F., Valentini, A., Chillemi, G., Structural and dynamic analysis of G558R mutation in chicken TSHR gene shows altered signal transduction and corroborates its role as a domestication gene (2020) Anim Genet., 51 (1), pp. 51-57; Ramu, P., Esuma, W., Kawuki, R., Rabbi, I.Y., Egesi, C., Bredeson, J.V., Bart, R.S., Lu, F., Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation (2017) Nat Genet., 49 (6), pp. 959-963; Zhou, Y., Massonnet, M., Sanjak, J.S., Cantu, D., Gaut, B.S., Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication (2017) Proc Natl Acad Sci U S A., 114 (44), pp. 11715-11720; He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Akhunov, E., Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome (2019) Nat Genet., 51 (5), pp. 896-904; Peters, J., Lebrasseur, O., Best, J., Miller, H., Fothergill, T., Dobney, K., Thomas, R.M., Larson, G., Questioning new answers regarding Holocene chicken domestication in China (2015) Proc Natl Acad Sci U S A., 112 (19); Tixier-Boichard, M., Bed’hom, B., Rognon, X., Chicken domestication: from archeology to genomics (2011) C R Biol., 334 (3), pp. 197-204; Meyer, R.S., Choi, J.Y., Sanches, M., Plessis, A., Flowers, J.M., Amas, J., Dorph, K., Purugganan, M.D., Domestication history and geographical adaptation inferred from a SNP map of African rice (2016) Nat Genet., 48 (9), pp. 1083-1088; Wang, G.D., Zhai, W., Yang, H.C., Wang, L., Zhong, L., Liu, Y.H., Fan, R.X., Zhang, Y.P., Out of southern East Asia: the natural history of domestic dogs across the world (2016) Cell Res., 26 (1), pp. 21-33; Fages, A., Hanghoj, K., Khan, N., Gaunitz, C., Seguin-Orlando, A., Leonardi, M., McCrory Constantz, C., Albizuri, S., Tracking five millennia of horse management with extensive ancient genome Time Series (2019) Cell., 35 (7), pp. 473-475. ,; Bosse, M., No “doom” in chicken domestication? (2019) PLoS Genet., 15 (5); Librado, P., Gamba, C., Gaunitz, C., Der Sarkissian, C., Pruvost, M., Albrechtsen, A., Fages, A., Jagannathan, V., Ancient genomic changes associated with domestication of the horse (2017) Science (New York, NY), 356 (6336), pp. 442-445; Zheng, Z., Wang, X., Li, M., Li, Y., Yang, Z., Wang, X., Pan, X., Guo, Y., The origin of domestication genes in goats (2020) Sci Adv, 6 (21), p. eaaz5216; Allaby, R.G., Ware, R.L., Kistler, L., A re-evaluation of the domestication bottleneck from archaeogenomic evidence (2019) Evol Appl., 12 (1), pp. 29-37; Karlsson, A.C., Fallahshahroudi, A., Johnsen, H., Hagenblad, J., Wright, D., Andersson, L., Jensen, P., A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens (2016) Gen Comp Endocrinol., 228, pp. 69-78; Liu, S., Yu, Y., Zhang, S., Cole, J.B., Tenesa, A., Wang, T., McDaneld, T.G., Fang, L., Epigenomics and genotype-phenotype association analyses reveal conserved genetic architecture of complex traits in cattle and human (2020) BMC Biol., 18 (1), p. 80; Wang, M.S., Li, Y., Peng, M.S., Zhong, L., Wang, Z.J., Li, Q.Y., Tu, X.L., Zhang, Y.P., Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens (2015) Mol Biol Evol., 32 (7), pp. 1880-1889; Yi, G., Qu, L., Liu, J., Yan, Y., Xu, G., Yang, N., Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing (2014) BMC Genomics., 15 (1), p. 962; Fan, W.L., Ng, C.S., Chen, C.F., Lu, M.Y., Chen, Y.H., Liu, C.J., Wu, S.M., Mao, C.T., Genome-wide patterns of genetic variation in two domestic chickens (2013) Genome Biol Evol., 5 (7), pp. 1376-1392; Wang, M.S., Otecko, N.O., Wang, S., Wu, D.D., Yang, M.M., Xu, Y.L., Murphy, R.W., Zhang, Y.P., An evolutionary genomic perspective on the breeding of dwarf chickens (2017) Mol Biol Evol., 34 (12), pp. 3081-3088; Li, H., Toward better understanding of artifacts in variant calling from high-coverage samples (2014) Bioinformatics (Oxford, England), 30 (20), pp. 2843-2851; McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., DePristo, M.A., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data (2010) Genome Res., 20 (9), pp. 1297-1303; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The Sequence Alignment/Map format and SAMtools (2009) Bioinformatics (Oxford, England), 25 (16), pp. 2078-2079; Browning, B.L., Browning, S.R., Genotype imputation with millions of reference samples (2016) Am J Hum Genet, 98 (1), pp. 116-126; Korneliussen, T.S., Albrechtsen, A., Nielsen, R., ANGSD: analysis of next generation sequencing data (2014) BMC Bioinformatics., 15 (1), p. 356; Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Sherry, S.T., The variant call format and VCFtools (2011) Bioinformatics (Oxford, England), 27 (15), pp. 2156-2158; Nei, M., Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases (1979) Proc Natl Acad Sci U S A., 76 (10), pp. 5269-5273; Wang, K., Li, M., Hakonarson, H., ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data (2010) Nucleic Acids Res., 38 (16); Reimand, J., Arak, T., Vilo, J., g:Profiler–a web server for functional interpretation of gene lists (2011 update) (2011) Nucleic Acids Res., 39, pp. W307-W315; Shriver, M.D., Kennedy, G.C., Parra, E.J., Lawson, H.A., Sonpar, V., Huang, J., Akey, J.M., Jones, K.W., The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs (2004) Hum Genomics., 1 (4), pp. 274-286

Indexed by Scopus

Leave a Comment