Interactions of primaquine and chloroquine with PEGylated phosphatidylcholine liposomes

Miatmoko A., Nurjannah I., Nehru N.F., Rosita N., Hendradi E., Sari R., Ekowati J.

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Campus C Unair, Mulyorejo, 60115, Indonesia


Abstract

This study aimed to analyze the interaction of primaquine (PQ), chloroquine (CQ), and liposomes to support the design of optimal liposomal delivery for hepatic stage malaria infectious disease. The liposomes were composed of hydrogenated soybean phosphatidylcholine, cholesterol, and distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethyleneglycol]-2000), prepared by thin film method, then evaluated for physicochemical and spectrospic characteristics. The calcein release was further evaluated to determine the effect of drug co-loading on liposomal membrane integrity. The results showed that loading PQ and CQ into liposomes produced changes in the infrared spectra of the diester phosphate and carbonyl ester located in the polar part of the phospholipid, in addition to the alkyl group (CH2) in the nonpolar portion. Moreover, the thermogram revealed the loss of the endothermic peak of liposomes dually loaded with PQ and CQ at 186.6 °C, which is identical to that of the phospholipid. However, no crystallinity changes were detected through powder X-ray diffraction analysis. Moreover, PQ, with either single or dual loading, produced the higher calcein release profiles from the liposomes than that of CQ. The dual loading of PQ and CQ tends to interact with the polar head group of the phosphatidylcholine bilayer membrane resulted in an increase in water permeability of the liposomes. © 2021, The Author(s).


Journal

Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 12420, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107882121&doi=10.1038%2fs41598-021-91866-0&partnerID=40&md5=54571a43c5d3db64751a38caef67295b

doi: 10.1038/s41598-021-91866-0

Issn: 20452322

Type: All Open Access, Gold, Green


References

Hill, D.R., Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I (2006) Am. J. Trop. Med. Hyg., 75, pp. 402-415. , COI: 1:CAS:528:DC%2BD28XhtVequrzE, PID: 16968913; Chu, C.S., White, N.J., Management of relapsing Plasmodium vivax malaria (2016) Expert Rev. Anti Infect. Ther., 14, pp. 885-900. , COI: 1:CAS:528:DC%2BC28XhsVKjtbjE, PID: 27530139; Fernàndez-Busquets, X., Novel strategies for Plasmodium-targeted drug delivery (2016) Expert Opin. Drug Deliv., 13, pp. 912-922; Burgoine, K.L., Bancone, G., Nosten, F., The reality of using primaquine (2010) Malar. J., 9, p. 376. , PID: 21184691; Marcsisin, S.R., Reichard, G., Pybus, B.S., Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: current state of the art (2016) Pharmacol. Ther., 161, pp. 1-10. , COI: 1:CAS:528:DC%2BC28XltFGlu70%3D, PID: 27016470; Fernando, D., Rodrigo, C., Rajapakse, S., Primaquine in vivax malaria: an update and review on management issues (2011) Malar. J., 10, p. 351. , COI: 1:CAS:528:DC%2BC38Xlt12gsrw%3D, PID: 22152065; Raphemot, R., Posfai, D., Derbyshire, E.R., Current therapies and future possibilities for drug development against liver-stage malaria (2016) J. Clin. Investig., 126, pp. 2013-2020. , PID: 27249674; Sibley, C.H., Price, R.N., Monitoring antimalarial drug resistance: applying lessons learned from the past in a fast-moving present (2012) Int. J. Parasitol. Drugs Drug Resist., 2, pp. 126-133. , PID: 24533274; Browning, D.J., Pharmacology of chloroquine and hydroxychloroquine (2014) Hydroxychloroquine and Chloroquine Retinopathy, pp. 35-63. , Browning DJ, (ed), Springer; Fasinu, P.S., Pathway-specific inhibition of primaquine metabolism by chloroquine/quinine (2016) Malar. J., 15, p. 466. , PID: 27618912, COI: 1:CAS:528:DC%2BC1cXhtlagtbk%3D; Pukrittayakamee, S., Pharmacokinetic interactions between primaquine and chloroquine (2014) Antimicrob. Agents Chemother., 58, pp. 3354-3359. , PID: 24687509, COI: 1:CAS:528:DC%2BC2cXhtlCntLbO; Egan, T.J., Kaschula, C.H., Strategies to reverse drug resistance in malaria (2007) Curr. Opin. Infect. Dis., 20, pp. 598-604. , COI: 1:CAS:528:DC%2BD2sXht1CnsLvO, PID: 17975410; Omwoyo, W.N., Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles (2014) J. Nanomed., 9, pp. 3865-3874. , COI: 1:CAS:528:DC%2BC2cXhvFyktrzL; Basso, L.G.M., Rodrigues, R.Z., Naal, R.M.Z.G., Costa-Filho, A.J., Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes (2011) Biochim. Biophys. Acta Biomembr., 1808, pp. 55-64. , COI: 1:CAS:528:DC%2BC3cXhsFartL3F; Barroso, R.P., Basso, L.G.M., Costa-Filho, A.J., Interactions of the antimalarial amodiaquine with lipid model membranes (2015) Chem. Phys. Lipids, 186, pp. 68-78. , COI: 1:CAS:528:DC%2BC2MXmslOlsg%3D%3D, PID: 25555567; Ghosh, A.K., Basu, R., Nandy, P., Lipid perturbation of liposomal membrane of dipalmitoyl phosphatidylcholine by chloroquine sulphate—a fluorescence anisotropic study (1995) Colloids Surf. B Biointerfaces, 4, pp. 1-4; Ferrari, V., Cutler, D.J., The pH-dependence of chloroquine uptake by phosphatidylcholine vesicles (1986) J. Pharm. Pharmacol., 38, pp. 761-763. , COI: 1:CAS:528:DyaL2sXisFA%3D, PID: 2878998; Eldin, N.E., Encapsulation in a rapid-release liposomal formulation enhances the anti-tumor efficacy of pemetrexed in a murine solid mesothelioma-xenograft model (2016) Eur. J. Pharm. Sci., 81, pp. 60-66. , COI: 1:CAS:528:DC%2BC2MXhs1Kis7jJ, PID: 26415830; Eldin, N.E., Elnahas, H.M., Mahdy, M.A.-E., Ishida, T., Liposomal pemetrexed: formulation, characterization and in vitro cytotoxicity studies for effective management of malignant pleural mesothelioma (2015) Biol. Pharm. Bull., 38, pp. 461-469. , COI: 1:CAS:528:DC%2BC2MXmt1aktL4%3D; Gürsoy, A., Kut, E., Özkirimli, S., Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy (2004) Int. J. Pharm., 271, pp. 115-123. , PID: 15129978, COI: 1:CAS:528:DC%2BD2cXhtVektLg%3D; Kulkarni, S.B., Betageri, G.V., Singh, M., Factors affecting microencapsulation of drugs in liposomes (1995) J. Microencapsul., 12, pp. 229-246. , COI: 1:CAS:528:DyaK2MXlslehtr4%3D, PID: 7650588; Takechi-Haraya, Y., Sakai-Kato, K., Goda, Y., Membrane rigidity determined by atomic force microscopy is a parameter of the permeability of liposomal membranes to the hydrophilic compound calcein (2017) AAPS PharmSciTech, 18, pp. 1887-1893. , COI: 1:CAS:528:DC%2BC28XhsFynt7rK, PID: 27645470; Gubernator, J., Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity (2011) Expert Opin. Drug Deliv., 8, pp. 565-580. , COI: 1:CAS:528:DC%2BC3MXkvVKktb4%3D, PID: 21492058; Miatmoko, A., Kawano, K., Yoda, H., Yonemochi, E., Hattori, Y., Tumor delivery of liposomal doxorubicin prepared with poly-l-glutamic acid as a drug-trapping agent (2017) J. Liposome Res., 27, pp. 99-107. , COI: 1:CAS:528:DC%2BC28XotFKqtbo%3D, PID: 26982164; Ashley, J.D., Dual carfilzomib and doxorubicin—loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma (2016) Mol. Cancer Ther., 15, pp. 1452-1460. , COI: 1:CAS:528:DC%2BC28XhtFSrtbbO, PID: 27196779; Miatmoko, A., Dual loading of primaquine and chloroquine into liposome (2019) Eur. Pharm. J., 66, pp. 18-25. , COI: 1:CAS:528:DC%2BB3cXitlGmtLs%3D; Ingebrigtsen, S.G., Nata, Š., Albuquerque, C.D., Jacobsen, C., Holsæter, A.M., Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method—dual asymmetric centrifugation (2017) Eur. J. Pharm. Sci., 97, pp. 192-199. , COI: 1:CAS:528:DC%2BC28XhvFCgtL3N, PID: 27866016; Shimanouchi, T., Ishii, H., Yoshimoto, N., Umakoshi, H., Kuboi, R., Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization (2009) Colloids Surf. B Biointerfaces, 73, pp. 156-160. , COI: 1:CAS:528:DC%2BD1MXoslalt70%3D, PID: 19560324; Chen, J., Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC (2013) Drug Dev. Ind. Pharm., 39, pp. 197-204. , COI: 1:CAS:528:DC%2BC3sXosVKmug%3D%3D, PID: 22443684; Hatzi, P., Mourtas, S., Klepetsanis, P.G., Antimisiaris, S.G., Integrity of liposomes in presence of cyclodextrins: effect of liposome type and lipid composition (2007) Int. J. Pharm., 333, pp. 167-176. , COI: 1:CAS:528:DC%2BD2sXitV2qu74%3D, PID: 17101248; Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Geny, D., Linder, M., Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids (2013) Biochimie, 95, pp. 2018-2033. , COI: 1:CAS:528:DC%2BC3sXhtFygsb%2FK, PID: 23871914; Cabral, E.C.M., Zollner, R.L., Santana, M.H.A., Preparation and characterization of liposomes entrapping allergenic proteins (2004) Braz. J. Chem. Eng., 21, pp. 137-146. , COI: 1:CAS:528:DC%2BD2cXjtlajs7o%3D; Li, H., Zhao, T., Sun, Z., Analytical techniques and methods for study of drug–lipid membrane interactions (2017) Rev. Anal. Chem., 37, pp. 1-23. , COI: 1:CAS:528:DC%2BC1cXltFegs7c%3D; Gonzalez-Ceron, L., Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in southern Mexico (2015) Malar. J., 14, p. 436. , COI: 1:CAS:528:DC%2BC2sXivVaiuw%3D%3D; (2015) Guidelines for the Treatment of Malaria. Guidelines for the Treatment of Malaria, , WHO Press; Baird, J.K., Short report: therapeutic efficacy of chloroquine combined with primaquine against Plasmodium falciparum in northeastern Papua, Indonesia (2002) Am. J. Trop. Med. Hyg., 66, pp. 659-660. , COI: 1:CAS:528:DC%2BD38Xntlehtbw%3D, PID: 12224570; Stensrud, G., Sande, S.A., Kristensen, S., Smistad, G., Formulation and characterisation of primaquine loaded liposomes prepared by a pH gradient using experimental design (2000) Int. J. Pharm., 198, pp. 213-228. , COI: 1:CAS:528:DC%2BD3cXitlelu74%3D, PID: 10767570; Qiu, L., Jing, N., Jin, Y., Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method (2008) Int. J. Pharm., 361, pp. 56-63. , COI: 1:CAS:528:DC%2BD1cXpt1als7k%3D, PID: 18573626; Nair, A., Biowaiver monographs for immediate-release solid oral dosage forms: primaquine phosphate (2012) J. Pharm. Sci., 101, pp. 936-945. , COI: 1:CAS:528:DC%2BC3MXhsFykurvO, PID: 22161739; Verbeeck, R.K., Junginger, H.E., Midha, K.K., Shah, V.P., Barends, D.M., Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: chloroquine phosphate, chloroquine sulfate, and chloroquine hydrochloride (2005) J. Pharm. Sci., 94, pp. 1389-1395. , COI: 1:CAS:528:DC%2BD2MXlslCrtrY%3D, PID: 15920763; Pawlikowska-Pawlega, B., Characteristics of quercetin interactions with liposomal and vacuolar membranes (2014) Biochim. Biophys. Acta, 1838, pp. 254-265. , COI: 1:CAS:528:DC%2BC3sXhvFOksrbF, PID: 24001508; Cieślik-Boczula, K., Interaction of quercetin, genistein and its derivatives with lipid bilayers—an ATR IR-spectroscopic study (2012) Vib. Spectrosc., 62, pp. 64-69. , COI: 1:CAS:528:DC%2BC38Xht12is7nJ; Ezer, N., Sahin, I., Kazanci, N., Alliin interacts with DMPC model membranes to modify the membrane dynamics: FTIR and DSC studies (2017) Vib. Spectrosc., 89, pp. 1-8. , COI: 1:CAS:528:DC%2BC2sXhtVKlsQ%3D%3D; Blanco, A., Blanco, G., Chapter 5—lipids (2017) Medical Biochemistry, pp. 99-119. , Blanco A, Blanco G, (eds), Academic Press; Yokota, D., Moraes, M., Pinho, S.C., Characterization of lyophilized liposomes produced with non-purified soy lecithin: a case study of casein hydrolysate microencapsulation (2012) Braz. J. Chem. Eng., 29, pp. 325-335. , COI: 1:CAS:528:DC%2BC38Xht12mu7bF; Yusuf, H., Nugraheni, R.W., Setyawan, D., Rosita, N., Phase behavior of dried—DDA liposomal formulation dispersed in HPMC Matrix in the presence of saccharides (2017) Int. J. PharmTech Res., 10, pp. 50-56. , COI: 1:CAS:528:DC%2BC1cXjsFeju7o%3D; Parmentier, J., Becker, M.M.M., Heintz, U., Fricker, G., Stability of liposomes containing bio-enhancers and tetraether lipids in simulated gastro-intestinal fluids (2011) Int. J. Pharm., 405, pp. 210-217. , COI: 1:CAS:528:DC%2BC3MXovVWhsQ%3D%3D, PID: 21145956; Han, S.-M., Improvement of cellular uptake of hydrophilic molecule, calcein, formulated by liposome (2018) J. Pharm. Investig., 48, pp. 595-601. , COI: 1:CAS:528:DC%2BC2sXhsFehtbbE; Cullis, P.R., Bally, M.B., Madden, T.D., Mayer, L.D., Hope, M.J., pH gradients and membrane transport in liposomal systems (1991) Trends Biotechnol., 9, pp. 268-272. , COI: 1:CAS:528:DyaK38XhtFegtLw%3D, PID: 1367566; Lasic, D.D., Ceh, B., Guo, L., Frederik, P.M., Barenholz, Y., Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery (1995) Biochim. Biophys. Acta, 1239, pp. 145-156. , PID: 7488619; Calvagno, M.G., Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes (2007) Curr. Drug Deliv., 4, pp. 89-101. , COI: 1:CAS:528:DC%2BD2sXitlamtbY%3D, PID: 17269921; Zidovetski, R., Sherman, I., Cardenas, M., Borchard, D.B., Chloroquine stabilization of phospholipid membranes against dialcylglycerol-induced perturbation (1993) Biochem. Pharmacol., 45, pp. 183-189; Tjahjandarie, T.S., Saputri, R.D., Hasanah, U., Rachmadiarti, F., Tanjung, M., 5,7-Dihydroxy-3,6-dimethoxy-3′,4′-methylendioxyflavon (2018) Molbank, 1000, pp. 1-4; Chen, Y., A low-molecular-weight heparin-coated doxorubicin-liposome for the prevention of melanoma metastasis (2015) J. Drug Target., 23, pp. 335-346. , COI: 1:CAS:528:DC%2BC2MXmtlClsbg%3D, PID: 25541466; Aronson, H., Correction factor for dissolution profile calculations (1993) J. Pharm. Sc, 82, p. 3549

Indexed by Scopus

Leave a Comment