Initial study on TMPRSS2 p.Val160Met genetic variant in COVID-19 patients

Wulandari L., Hamidah B., Pakpahan C., Damayanti N.S., Kurniati N.D., Adiatmaja C.O., Wigianita M.R., Soedarsono, Husada D., Tinduh D., Prakoeswa C.R.S., Endaryanto A., Puspaningsih N.N.T., Mori Y., Lusida M.I., Shimizu K., Oceandy D.

Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia; Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Indrapura KOGABWILHAN II Hospital, Surabaya, Indonesia; Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga/Clinical Microbiology Unit, Central Laboratory Installation, Dr Soetomo General Academic Hospital, Surabaya, Indonesia; Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Clinical Pathology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Child Health, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia; Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia; Department of Dermatology Venerology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia; Laboratory of Proteomic, University CoE-Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya, Indonesia; Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; CRC-ERID, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom


Background: Coronavirus disease 2019 (COVID-19) is a global health problem that causes millions of deaths worldwide. The clinical manifestation of COVID-19 widely varies from asymptomatic infection to severe pneumonia and systemic inflammatory disease. It is thought that host genetic variability may affect the host’s response to the virus infection and thus cause severity of the disease. The SARS-CoV-2 virus requires interaction with its receptor complex in the host cells before infection. The transmembrane protease serine 2 (TMPRSS2) has been identified as one of the key molecules involved in SARS-CoV-2 virus receptor binding and cell invasion. Therefore, in this study, we investigated the correlation between a genetic variant within the human TMPRSS2 gene and COVID-19 severity and viral load. Results: We genotyped 95 patients with COVID-19 hospitalised in Dr Soetomo General Hospital and Indrapura Field Hospital (Surabaya, Indonesia) for the TMPRSS2 p.Val160Met polymorphism. Polymorphism was detected using a TaqMan assay. We then analysed the association between the presence of the genetic variant and disease severity and viral load. We did not observe any correlation between the presence of TMPRSS2 genetic variant and the severity of the disease. However, we identified a significant association between the p.Val160Met polymorphism and the SARS-CoV-2 viral load, as estimated by the Ct value of the diagnostic nucleic acid amplification test. Furthermore, we observed a trend of association between the presence of the C allele and the mortality rate in patients with severe COVID-19. Conclusion: Our data indicate a possible association between TMPRSS2 p.Val160Met polymorphism and SARS-CoV-2 infectivity and the outcome of COVID-19. © 2021, The Author(s).

COVID-19; Polymorphism; TMPRSS2


Human Genomics

Publisher: BioMed Central Ltd

Volume 15, Issue 1, Art No 29, Page – , Page Count

Journal Link:

doi: 10.1186/s40246-021-00330-7

Issn: 14739542

Type: All Open Access, Gold, Green


Dong, E., Du, H., Gardner, L., An interactive web-based dashboard to track COVID-19 in real time (2020) Lancet Infect Dis, 20 (5), pp. 533-534; Docherty, A.B., Harrison, E.M., Green, C.A., Hardwick, H.E., Pius, R., Norman, L., Holden, K.A., Carson, G., Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study (2020) BMJ, 369, p. m1985; Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Du, C., Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China (2020) JAMA Intern Med, 180 (7), pp. 934-943; Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Zhou, Y., Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis (2020) Int J Infect Dis, 94, pp. 91-95; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426 (6965), pp. 450-454; Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Wang, X., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor (2020) Nature, 581 (7807), pp. 215-220; Novelli, A., Biancolella, M., Borgiani, P., Cocciadiferro, D., Colona, V.L., D’Apice, M.R., Rogliani, P., Campana, A., Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients (2020) Hum Genomics, 14 (1), p. 29; Chiu, R.W., Tang, N.L., Hui, D.S., Chung, G.T., Chim, S.S., Chan, K.C., Sung, Y.M., Lee, W.S., ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome (2004) Clin Chem, 50 (9), pp. 1683-1686; Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Nitsche, A., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor (2020) Cell, 181 (2), pp. 271-280. , e278; Cantuti-Castelvetri, L., Ojha, R., Pedro, L.D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Simons, M., Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity (2020) Science, 370 (6518), pp. 856-860; Bestle, D., Heindl, M.R., Limburg, H., Van Lam Van, T., Pilgram, O., Moulton, H., Stein, D.A., Dolnik, O., TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells (2020) Life Sci Alliance, 3 (9). , (,):,.,; Paniri, A., Hosseini, M.M., Akhavan-Niaki, H., First comprehensive computational analysis of functional consequences of TMPRSS2 SNPs in susceptibility to SARS-CoV-2 among different populations (2020) J Biomol Struct Dyn, ,; Bhanushali, A., Rao, P., Raman, V., Kokate, P., Ambekar, A., Mandva, S., Bhatia, S., Das, B.R., Status of TMPRSS2-ERG fusion in prostate cancer patients from India: correlation with clinico-pathological details and TMPRSS2 Met160Val polymorphism (2018) Prostate Int, 6 (4), pp. 145-150; Giri, V.N., Ruth, K., Hughes, L., Uzzo, R.G., Chen, D.Y., Boorjian, S.A., Viterbo, R., Rebbeck, T.R., Racial differences in prediction of time to prostate cancer diagnosis in a prospective screening cohort of high-risk men: effect of TMPRSS2 Met160Val (2011) BJU Int, 107 (3), pp. 466-470; Lubieniecka, J.M., Cheteri, M.K., Stanford, J.L., Ostrander, E.A., Met160Val polymorphism in the TRMPSS2 gene and risk of prostate cancer in a population-based case-control study (2004) Prostate, 59 (4), pp. 357-359; Maekawa, S., Suzuki, M., Arai, T., Suzuki, M., Kato, M., Morikawa, T., Kasuya, Y., Homma, Y., TMPRSS2 Met160Val polymorphism: significant association with sporadic prostate cancer, but not with latent prostate cancer in Japanese men (2014) Int J Urol, 21 (12), pp. 1234-1238; Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qi, J., Structural and functional basis of SARS-CoV-2 entry by using human ACE2 (2020) Cell, 181 (4), pp. 894-904. , e899; Cavasotto, C.N., Lamas, M.S., Maggini, J., Functional and druggability analysis of the SARS-CoV-2 proteome (2021) Eur J Pharmacol, 890, p. 173705; Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Takeda, M., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells (2020) Proc Natl Acad Sci U S A, 117 (13), pp. 7001-7003; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J Virol, 85 (2), pp. 873-882; Thunders, M., Delahunt, B., Gene of the month: TMPRSS2 (transmembrane serine protease 2) (2020) J Clin Pathol, 73 (12), pp. 773-776; Hou, Y., Zhao, J., Martin, W., Kallianpur, A., Chung, M.K., Jehi, L., Sharifi, N., Cheng, F., New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis (2020) BMC Med, 18 (1), p. 216; FitzGerald, L.M., Agalliu, I., Johnson, K., Miller, M.A., Kwon, E.M., Hurtado-Coll, A., Fazli, L., Cox, M.E., Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer (2008) BMC Cancer, 8 (1), p. 230; Wigginton, J.E., Cutler, D.J., Abecasis, G.R., A note on exact tests of Hardy-Weinberg equilibrium (2005) Am J Hum Genet, 76 (5), pp. 887-893; Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H.K., Morgan, R., Klein, S.L., Impact of sex and gender on COVID-19 outcomes in Europe (2020) Biol Sex Differ, 11 (1), p. 29; Zhang, Q., Bastard, P., Liu, Z., Le Pen, J., Moncada-Velez, M., Chen, J., Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 (2020) Science, 370 (6515), p. eabd4570. , (,):,.,; van Der Made, C.I., Simons, A., Schuurs-Hoeijmakers, J., van Den Heuvel, G., Mantere, T., Kersten, S., Presence of genetic variants among young men with severe COVID-19 (2020) JAMA, 324 (7), pp. 663-673; Wang, F., Huang, S., Gao, R., Zhou, Y., Lai, C., Li, Z., Xian, W., Liu, L., Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility (2020) Cell Discov, 6 (1), p. 83; Latini, A., Agolini, E., Novelli, A., Borgiani, P., Giannini, R., Gravina, P., COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells (2020) Genes (Basel), 11 (9), p. 1010. , (,):,.,; The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic (2020) Eur J Hum Genet, 28 (6), pp. 715-718; Andolfo, I., Russo, R., Lasorsa, V.A., Cantalupo, S., Rosato, B.E., Bonfiglio, F., Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19 (2021) iScience, 24 (4); Hofmann-Winkler, H., Moerer, O., Alt-Epping, S., Brauer, A., Buttner, B., Muller, M., Fricke, T., Heise, D., Camostat mesylate may reduce severity of coronavirus disease 2019 sepsis: a first observation (2020) Crit Care Explor, 2 (11); (2020) Clinical Management of COVID-19: World Health Organization

Indexed by Scopus

Leave a Comment