Influence of thickness on the structural, morphological and optical properties of Co-doped TiO2 thin films prepared by sol-gel method

Mozaffari N., Vambol V., Hamzah Y., El Din Mahmoud A., Mozaffari N., Khan N.A., Vambol S., Khan N., Vinod A.

Department of Physics, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran; Department of Applied Ecology and Environmental Sciences, National University “Yuri Kondratyuk Poltava Polytechnic”, Poltava, Ukraine; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia; Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt; Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran; Department Civil Engineering, Jamia Millia Islamia, New Delhi, 110025, India; Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, 61002, Ukraine; Environmental Research Lab, Department of Chemistry, AMU, Aligarh, 202001, India; Department of Physics, Mar Thoma College, Tiruvalla, Kerala, 689103, India


Abstract

TiO2-based materials have high strength and suitable electronic properties that make TiO2 widely used. In this research, Co-doped TiO2 thin films were created through the sol-gel spin-coating method. The deposition process was conducted 3 times to prepare 1 to 3 layers. The structural, morphological, and optical properties of Co-TiO2 thin films were explored by XRD, SEM, and UV-VIS analyses. The prepared films were amorphous without a crystalline structure. SEM images demonstrate highly uniform particles on the surfaces. With the rise of thickness, nanoparticles get closer, and the particle size decreases. EDS spectra verify the existence of Ti, O, and Co in all samples. The transparency of thin films was reduced by increasing the thickness. Bandgap energy decreased with increasing the deposition layers, while Urbach energy increased. © 2021 by the authors.

Co-doped TiO2 thin films; Optical properties; Sol-gel synthesis; Spin-coating method


Journal

Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 1, Art No , Page 718 – 731, Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105275840&doi=10.33263%2fBRIAC121.718731&partnerID=40&md5=0146d33542b8791a23175c7cea34557e

doi: 10.33263/BRIAC121.718731

Issn: 20695837

Type: All Open Access, Bronze


References

Riaz, S., Park, S.-Jin, An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments (2020) J. Ind. Eng. Chem, 84, pp. 23-41. , https://doi.org/10.1016/j.jiec.2019.12.021; Hoseinzadeh, T., Solaymani, S., Kulesza, S., Achour, A., Ghorannevis, Z., Ţălu, Ş., Bramowicz, M., Boochani, A., Mozaffari. N. Microstructure, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures (2018) J. Electroanal. Chem, pp. 830-831. , https://doi.org/10.1016/j.jelechem.2018.10.037, 80-87; Chibani, O., Challali, F., Touam, T., Chelouche, A., Djouadi, D., Optical waveguiding characteristics of TiO2 sol–gel thin films for photonic devices: effects of thermal annealing (2019) Opt. Eng, 58, p. 047101. , https://doi.org/10.1117/1.OE.58.4.047101; Zuccaro, C., Ghosh, I., Urban, K., Klein, N., Penn, S., Alford, N.M., Materials for HTS-shielded dielectric resonators (1997) IEEE Trans. Appl. Supercond, 7, pp. 3715-3718. , https://doi.org/10.1109/77.622225; Ning, X.-b., Wang, X.-t., Shao, Q., Ge, S.-s., Chi, L.-f. You-bo Nan, Liang, Hao, Hou, Bao-rong, ZnPc/TiO2 composites for photocathodic protection of 304 stainless steel (2020) J. Electroanal. Chem, 585, p. 113802. , https://doi.org/10.1016/j.jelechem.2019.113802; Qian, Y., Du, J., Kang, D.J., Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method (2019) Microporous Mesoporous Mater, 273, pp. 148-155. , https://doi.org/10.1016/j.micromeso.2018.06.056; Fujisawa, J.-i., Interfacial charge-transfer transitions between TiO2 and indole (2020) Chem. Phys. Lett, 739, p. 136974. , https://doi.org/10.1016/j.cplett.2019.136974; Wu, Z., Yuan, D., Lin, S., Guo, W., Zhan, D., Sun, L., Lin, C., Enhanced photoelectrocatalytic activity of Bi2S3–TiO2 nanotube arrays hetero-structure under visible light irradiation (2020) Int. J. Hydrog. Energy, 45, pp. 32012-32021. , https://doi.org/10.1016/j.ijhydene.2020.08.258; Yu, J., Zou, J., Xu, P., He, Q., Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes (2020) J. Clean. Prod, 251, p. 119744. , https://doi.org/10.1016/j.jclepro.2019.119744; Bao, X., Li, H., Wang, Z., Tong, F., Liu, M., Zheng, Z., Wang, P., Huang, B., TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde (2021) Appl. Catal. B-Environ, 286, p. 119885. , https://doi.org/10.1016/j.apcatb.2021.119885; Sadanandam, G., Luo, X., Chen, X., Bao, Y., Homewood, K.P., Gao, Y., Cu oxide quantum dots loaded TiO2 nanosheet photocatalyst for highly efficient and robust hydrogen generation (2021) Appl. Surf. Sci, 541, p. 148687. , https://doi.org/10.1016/j.apsusc.2020.148687; Mozaffari, N., Elahi, S.M., Parhizgar, S.S., Deposition of TiO2 Multilayer Thin Films Doped with Cobalt and Studying the Effect of Annealing Temperatures and Number of Layers on the Structural and Morphological of Thin Films (2019) Int. J. Thermophys, 40, p. 67. , https://doi.org/10.1007/s10765-019-2533-1; Mohapatra, J., Xing, M., Elkins, J., Ping Liu, J., Hard and semi-hard magnetic materials based on cobalt and cobalt alloys (2020) J. Alloys Compd, 824, p. 153874. , https://doi.org/10.1016/j.jallcom.2020.153874; Madkhli, A.Y., Shirbeeny, W., The effect of cobalt ions doping on the optical properties of ZnS quantum dots according to photoluminescence intensity and crystalline structure (2020) Physica B Condens. Matter, 597, p. 412414. , https://doi.org/10.1016/j.physb.2020.412414; Pubby, K., Babu, K.V., Narang, S.B., Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites (2020) Mater. Sci. Eng., B, 225, p. 114513. , https://doi.org/10.1016/j.mseb.2020.114513; Liu, C., Wang, F., Zhu, S., Xu, Y., Liang, Q., Chen, Z., Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting (2018) Colloid Interface Sci, 513, pp. 403-411. , https://doi.org/10.1016/j.jcis.2018.07.003; Suriyachai, N., Chuangchote, S., Laosiripojana, N., Champreda, V., Sagawa, T., Synergistic Effects of Co-Doping on Photocatalytic Activity of Titanium Dioxide on Glucose Conversion to Value-Added Chemicals (2020) ACS Omega, 5, p. 20373; Soares, G.B., Ribeiro, R.A.P., de Lazaro, S.R., Ribeiro, C., Photoelectrochemical and theoretical investigation of the photocatalytic activity of TiO2: N (2016) RSC Adv, 6, pp. 89687-89698. , https://doi.org/10.1039/C6RA15825K; He, X., Yang, C.P., Zhang, G.L., Shi, D.W., Huang, Q.A., Xiao, H.B., Liu, Y., Xiong, R., Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment (2016) Mater. Des, 106, pp. 74-80. , https://doi.org/10.1016/j.matdes.2016.05.025; Chanda, A., Rout, K., Vasundhara, M., Joshi, S.R., Singh, J., Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles (2018) RSC Adv, 8, pp. 10939-10947. , https://doi.org/10.1039/C8RA00626A; Dubey, R.S., Singh, S., Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method (2017) Results Phys, 7, pp. 1283-1288. , https://doi.org/10.1016/j.rinp.2017.03.014; Kominami, H., Nakaseko, T., Shimada, Y., Furusho, A., Inoue, H., Murakami, S., Kera, Y., Ohtani, B., Selective photocatalytic reduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium(iv) oxide particles (2005) ChemComm, pp. 2933-2935. , https://doi.org/10.1039/B502909K; Kominami, H., Furusho, A., Murakami, S., Inoue, H., Kera, Y., Ohtani, B., Effective Photocatalytic Reduction of Nitrate to Ammonia in an Aqueous Suspension of Metal-Loaded Titanium (IV) Oxide Particles in the Presence of Oxalic Acid (2001) Catal. Lett, 76, pp. 31-34. , https://doi.org/10.1023/A:1016771908609; Kudo, A., Domen, K., Maruya, K.-I., Onishi, T., Reduction of nitrate ions into nitrite and ammonia over some photocatalysts (1992) J. Catal, 135, p. 300. , https://doi.org/10.1016/0021-9517(92)90287-R; Ranjit, K.T., Varadarajan, T.K., Viswanathan, B., Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts (1995) J. Photochem. Photobiol. A, 89, pp. 67-68. , https://doi.org/10.1016/1010-6030(94)04029-2; Ranjit, K.T., Viswanathan, B., Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts (1997) J. Photochem. Photobiol. A, 107, p. 215. , https://doi.org/10.1016/S1010-6030(96)04505-4; Zhu, H., Chen, X., Zheng, Z., Ke, X., Jaatinen, E., Zhao, J., Guo, C., Wang, D., Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation (2009) ChemComm, 48, pp. 7524-7526. , https://doi.org/10.1039/B917052A; Méndez-Lozano, N., Apátiga-Castro, M., Manzano-Ramírez, A., Rivera-Muñoz, E. M., Velázquez-Castillo, R., Alberto-González, C., Zamora-Antuñano, M., Morphological study of TiO₂ thin films doped with cobalt by Metal Organic Chemical Vapor Deposition (2020) Results Phys, 16, p. 102891. , https://doi.org/10.1016/j.rinp.2019.102891; Gong, B., Luo, X., Bao, N., Ding, J., Li, S., Yi, J., XPS study of cobalt doped TiO2 films prepared by pulsed laser deposition (2014) Surf. Interface Anal, 46, pp. 1043-1046. , https://doi.org/10.1002/sia.5397; Mozaffari, N., Elahi, S.H., Parhizgar, S.S., Mozaffari, N., Elahi, S.M., The effect of annealing and layer numbers on the optical and electrical properties of cobalt-doped TiO2 thin films (2019) Mater. Res. Express, 6, p. 116428. , https://doi.org/10.1088/2053-1591/ab4662; Zhu, W., Xu, Y., Li, H., Dai, B., Xu, H., Wang, C., Chao, Y., Liu, H., Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid (2014) Korean J. Chem. Eng, 31, pp. 211-217. , https://doi.org/10.1007/s11814-013-0224-3; Grilli, M.L., Yilmaz, M., Aydogan, S., Cirak, B.B., Room temperature deposition of XRD-amorphous TiO2 thin films: Investigation of device performance as a function of temperature (2018) Ceram. Int, 44, pp. 11582-11590. , https://doi.org/10.1016/j.ceramint.2018.03.222; Nair, P.B., Justinvictor, V.B., Daniel, G.P., Joy, K., Thomas, P.V., Influence of film thickness and annealing atmosphere on the structural, optical and luminescence properties of nanocrystalline TiO2 thin films prepared by RF magnetron sputtering (2013) J. Mater. Sci.: Mater. Electron, 24, pp. 2453-2460. , https://doi.org/10.1007/s10854-013-1117-2; Renugadevi, R., Venkatachalam, T., Narayanasamy, R., Dinesh Kirupha, S., Preparation of Co doped TiO2 nano thin films by Sol Gel technique and photocatalytic studies of prepared films in tannery effluent (2016) Optik, 127, pp. 10127-10134. , https://doi.org/10.1016/j.ijleo.2016.07.090; Sadanandam, G., Lalitha, K., Kumari, V.D., Shankarb, M.V., Subrahmanyam, M., Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation (2013) Int. J. Hydrog. Energy, 38, pp. 9655-9664. , https://doi.org/10.1016/j.ijhydene.2013.05.116; Momenin, M.M., Ghayeb, Y., Preparation of cobalt coated TiO2 and WO3–TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination (2016) Ceram. Int, 42, pp. 7014-7022. , https://doi.org/10.1016/j.ceramint.2016.01.089; Xu, J., Shi, S., Li, L., Zhang, X., Wang, Y., Chen, X., Wang, J., Zhong, W., Structural, optical, and ferromagnetic properties of Co-doped TiO2 films annealed in vacuum (2010) J. Appl. Phys, 107, p. 053910. , https://doi.org/10.1063/1.3319556; Mugundan, S., Rajamannan, B., Viruthagiri, G., Shanmugam, N., Gobi, R., Praveen, P., Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique (2015) Appl. Nanosci, 5, pp. 449-456. , https://doi.org/10.1007/s13204-014-0337-y; Ebrahimian, A., Monazzam, P., Fakhari Kisomi, B., Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue (2017) Desalin. water treat, 63, pp. 283-292; Venkatachalam, N., Palanichamy, M., Arabindoo, B., Murugesan, V., Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2 (2007) J. Mol. Catal. A Chem, 266, pp. 158-165. , https://doi.org/10.1016/j.molcata.2006.10.051; Hamadanian, M., Reisi-Vanani, A., Majedi, A., Sol-gel preparation and characterization of Co/TiO2 nanoparticles: Application to the degradation of methyl orange (2010) J. Iran. Chem. Soc, 7, pp. 52-58. , https://doi.org/10.1007/BF03246184; Ju, Y., Wang, M., Wang, Y., Wang, S., Fu, C., Electrical Properties of Amorphous Titanium Oxide Thin Films for Bolometric Application (2013) Adv. Condens. Matter Phys, 2013, p. 5. , https://doi.org/10.1155/2013/365475; Boutlala, A., Bourfaa, F., Mahtili, M., Bouaballou, A., Deposition of Co-doped TiO2 Thin Films by sol-gel method (2016) IOP Conf. Ser.: Mater. Sci. Eng, 108, p. 012048. , https://doi.org/10.1088/1757-899X/108/1/012048; Chanda, A., Ram Joshi, S., Akshay, V. R., Varma, S., Singh, J., Vasundhara, M., Shukla, P., Structural and optical properties of multilayered un-doped and cobalt doped TiO2 thin films (2021) Appl. Surf. Sci, 536, p. 147830. , https://doi.org/10.1016/j.apsusc.2020.147830; González-Torres, J.C., Cipriano, L.A., Poulain, E., Domínguez-Soria, V., García-Cruz, R., Olvera-Neria, O., Optical properties of anatase TiO2: synergy between transition metal doping and oxygen vacancies (2018) J. Mol. Model, 24, pp. 1-11. , https://doi.org/10.1007/s00894-018-3816-3; Banakh, O., Schmid, P.E., Sanjines, R., Levy, F., Electrical and optical properties of TiOx thin films deposited by reactive magnetron sputtering (2002) Surf. Coat. Technol, 151 (–152), pp. 272-275. , https://doi.org/10.1016/S0257-8972(01)01605-X; Ghasemi, S., Rahimnejad, S., Rahman, S.S., Rohani, S., Gholami, M.R., Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid (2009) J. Hazard. Mater, 172, pp. 1573-1578. , https://doi.org/10.1016/j.jhazmat.2009.08.029; El-Gammal, O.A., Alsayed Fouda, A. E., Mohamed Nabih, D., Synthesis, spectral characterization, DFT and in vitro antibacterial activity of Zn(II), Cd(II) and Hg(II) complexes derived from a new thiosemicarbazid (2019) Lett. Appl. NanoBioScience, 8, pp. 715-722. , https://doi.org/10.33263/LIANBS84.715722; Mostaghni, F., Abed, Y., Structural determination of Co/TiO2 nanocomposite: XRD technique and simulation analysis (2016) Mater. Sci.-Poland, 34, pp. 534-539. , https://doi.org/10.1515/msp-2016-0071; Tang, H., Berger, H., Schmid, P.E., Lévy, F., Burri, G., Photoluminescence in TiO2 anatase single crystals (1993) Solid State Commun, 87, pp. 847-850. , https://doi.org/10.1016/0038-1098(93)90427-O; Hu, Z.G., Li, W.W., Wu, J.D., Sun, J., Shu, Q.W., Zhong, X.X., Zhu, Z.Q., Chu, J.H., Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra (2008) Appl. Phys. Lett, 93, p. 181910. , https://doi.org/10.1063/1.3021074; Mahmoud, A.E.D., Nanomaterials: Green Synthesis for Water Applications (2020) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, pp. 1-21. , https://doi.org/10.1007/978-3-030-11155-7_67-1, Kharissova O., Martínez L., Kharisov B. (eds) Springer, Cham; Abushad, M., Arshad, M., Naseem, S., Husain, S., Khan, W., Role of Cr doping in tuning the optical and dielectric properties of TiO2 nanostructures (2020) Mater. Chem. Phys, 256, p. 123641. , https://doi.org/10.1016/j.matchemphys.2020.123641; Herve, P.J.L., Vandamme, L.K.J., General relation between refractive index and energy gap in semiconductors (1994) Infrared Phys. Technol, 35, pp. 609-615. , https://doi.org/10.1016/1350-4495(94)90026-4; Douven, S., Mahy, J.G., Wolfs, C., Reyserhove, C., Poelman, D., Devred, F., Gaigneaux, E. M., Lambert, S.D., Efficient N, Fe Co-Doped TiO2 Active under Cost-Effective Visible LED Light: From Powders to Films (2020) Catalyst, 10, p. 547. , https://doi.org/10.3390/catal10050547; Bhat, S., Sandeep, K.M., Kumar, P., Dharmaprakash, S.M., Byrappa, K., Characterization of transparent semiconducting cobalt doped titanium dioxide thin films prepared by sol–gel process (2018) J. Mater. Sci.: Mater. Electron, 29, pp. 1098-1106. , https://doi.org/10.1007/s10854-017-8011-2; Ferreira, V.C., Nunes, M.R., Silvestre, A.J., Monteiro, O.C., Synthesis and properties of Co-doped titanate nanotubes and their optical sensitization with methylene blue (2013) Mater. Chem. Phys, 142, pp. 355-362. , https://doi.org/10.1016/j.matchemphys.2013.07.029; Subramanian, M., Vijayalakshmi, S., Venkataraj, S., Jayavel, R., Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process (2008) Thin Solid Films, 516, pp. 3776-3782. , https://doi.org/10.1016/j.tsf.2007.06.125; Khalaf, M.M., El-Lateef, H.M.A., Ali, H.M., Optical and Photocatalytic Measurements of Co-TiO2 Nanoparticle Thin Films (2018) Plasmonics, 13, pp. 1795-1802. , https://doi.org/10.1007/s11468-018-0693-7; Tian, J., Deng, H., Sun, L., Kong, H., Yang, P., Chu, J., Effects of Co doping on structure and optical properties of TiO2 thin films prepared by sol–gel method (2012) Thin Solid Films, 520, pp. 5179-5183. , https://doi.org/10.1016/j.tsf.2012.03.125; Nam, G., Yoon, H., Kim, B., Lee, D.-Y., Kim, J.S., Leem, J.-Y., Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method (2014) J. Nanosci. Nanotechnol, 14, pp. 8544-8548. , https://doi.org/10.1166/jnn.2014.9982; Akshay, V.R., Arun, B., Mandal, G., Vasundhara, M., Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method (2019) Phys. Chem. Chem, 21, pp. 12991-13004. , https://doi.org/10.1039/C9CP01351B

Indexed by Scopus

Leave a Comment