Gametocyte carriage of Plasmodium falciparum (pfs25) and Plasmodium vivax (pvs25) during mass screening and treatment in West Timor, Indonesia: a longitudinal prospective study

Kosasih A., Koepfli C., Dahlan M.S., Hawley W.A., Baird J.K., Mueller I., Lobo N.F., Sutanto I.

PhD Programme in Biomedical Sciences, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia; Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Indonesian Medical Education and Research Institute, Jakarta, Indonesia; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States; PT Epidemiologi Indonesia, Jakarta, Indonesia; UNICEF, Jakarta, Indonesia; Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Infection & Immunity Division, Walter & Eliza Hall Institute, Melbourne, Australia; Department of Parasitology, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia


Abstract

Background: A goal of malaria epidemiological interventions is the detection and treatment of parasite reservoirs in endemic areas—an activity that is expected to reduce local transmission. Since the gametocyte is the only transmissible stage from human host to mosquito vector, this study evaluated the pre and post presence of gametocytes during a mass screening and treatment (MST) intervention conducted during 2013 in East Nusa Tenggara, Indonesia. Methods: RT-qPCR targeting pfs25 and pvs25 transcripts—gametocyte molecular markers for Plasmodium falciparum and Plasmodium vivax, respectively, was performed to detect and quantify gametocytes in blood samples of P. falciparum and P. vivax-infected subjects over the course of the MST study. The presence of both asexual and sexual parasites in microscopic and submicroscopic infections was compared from the start and end of the MST, using proportion tests as well as parametric and non-parametric tests. Results: Parasite prevalence remained unchanged for P. falciparum (6% = 52/811 versus 7% = 50/740, p = 0.838), and decreased slightly for P. vivax (24% = 192/811 versus 19% = 142/740, p = 0.035) between the MST baseline and endpoint. No significant difference was observed in gametocyte prevalence for either P. falciparum (2% = 19/803 versus 3% = 23/729, p = 0.353, OR = 1.34, 95%CI = 0.69–2.63), or P. vivax (7% = 49/744 versus 5% = 39/704, p = 0.442, OR = 0.83, 95%CI = 0.52–1.31). Even though there was an insignificant difference between the two time points, the majority of parasite positive subjects at the endpoint had been negative at baseline (P. falciparum: 66% = 29/44, P. vivax: 60% = 80/134). This was similarly demonstrated for the transmissible stage—where the majority of gametocyte positive subjects at the endpoint were negative at baseline (P. falciparum: 95% = 20/21, P. vivax: 94% = 30/32). These results were independent of treatment provided during MST activities. No difference was demonstrated in parasite and gametocyte density between both time points either in P. falciparum or P. vivax. Conclusion: In this study area, similar prevalence rates of P. falciparum and P. vivax parasites and gametocytes before and after MST, although in different individuals, points to a negligible impact on the parasite reservoir. Treatment administration based on parasite positivity as implemented in the MST should be reevaluated for the elimination strategy in the community. Trial registration Clinical trials registration NCT01878357. Registered 14 June 2013, https://www.clinicaltrials.gov/ct2/show/NCT01878357. © 2021, The Author(s).

Gametocyte; Mass screening and treatment; Pfs25; Pvs25


Journal

Malaria Journal

Publisher: BioMed Central Ltd

Volume 20, Issue 1, Art No 177, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104141748&doi=10.1186%2fs12936-021-03709-y&partnerID=40&md5=9c099fec0d8bce6347bf112092d4561b

doi: 10.1186/s12936-021-03709-y

Issn: 14752875

Type: All Open Access, Gold, Green


References

Venugopal, K., Hentzschel, F., Valkiūnas, G., Marti, M., Plasmodium asexual growth and sexual development in the haematopoietic niche of the host (2020) Nat Rev Microbiol, 18, pp. 177-189. , COI: 1:CAS:528:DC%2BB3cXmt1Olsw%3D%3D; Meibalan, E., Marti, M., Biology of malaria transmission (2017) Cold Spring Harb Perspect Med, 7, p. a025452; Koepfli, C., Yan, G., Plasmodium gametocytes in field studies: do we measure commitment to transmission or detectability? (2018) Trends Parasitol, 34, pp. 378-387; Gebru, T., Lalremruata, A., Kremsner, P.G., Mordmüller, B., Held, J., Life-span of in vitro differentiated Plasmodium falciparum gametocytes (2017) Malar J, 16, p. 330; Karl, S., Laman, M., Moore, B.R., Benjamin, J.M., Salib, M., Lorry, L., Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria (2016) Acta Trop, 160, pp. 1-8; Slater, H.C., Ross, A., Felger, I., Hofmann, N.E., Robinson, L., Cook, J., The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density (2019) Nat Commun, 10, p. 1433; Tadesse, F.G., Slater, H.C., Chali, W., Teelen, K., Lanke, K., Belachew, M., The relative contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia (2018) Clin Infect Dis, 66, pp. 1883-1891. , COI: 1:CAS:528:DC%2BC1MXhtVCntbzF; Kiattibutr, K., Roobsoong, W., Sriwichai, P., Saeseu, T., Rachaphaew, N., Suansomjit, C., Infectivity of symptomatic and asymptomatic Plasmodium vivax infections to a Southeast Asian vector Anopheles dirus (2017) Int J Parasitol, 47, pp. 163-170; Lin, J.T., Ubalee, R., Lon, C., Balasubramanian, S., Kuntawunginn, W., Rahman, R., Microscopic Plasmodium falciparum gametocytemia and infectivity to mosquitoes in Cambodia (2016) J Infect Dis, 213, pp. 1491-1494; Martins-Campos, K.M., Kuehn, A., Almeida, A., Duarte, A.P.M., Sampaio, V.S., Rodriguez, Í.C., Infection of Anopheles aquasalis from symptomatic and asymptomatic Plasmodium vivax infections in Manaus, western Brazilian Amazon (2018) Parasit Vectors, 11, p. 288; Lindblade, K.A., Steinhardt, L., Samuels, A., Kachur, S.P., Slutsker, L., The silent threat: asymptomatic parasitemia and malaria transmission (2013) Expert Rev Anti Infect Ther, 11, pp. 623-639. , COI: 1:CAS:528:DC%2BC3sXptVOqt7k%3D; Bousema, T., Drakeley, C., Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination (2011) Clin Microbiol Rev, 24, pp. 377-410; Beri, D., Balan, B., Tatu, U., Commit, hide and escape: the story of Plasmodium gametocytes (2018) Parasitology, 145, pp. 1772-1782; Stone, W., Gonçalves, B.P., Bousema, T., Drakeley, C., Assessing the infectious reservoir of falciparum malaria: past and future (2015) Trends Parasitol, 31, pp. 287-296; Bousema, T., Drakeley, C., Determinants of malaria transmission at the population level (2017) Cold Spring Harb Perspect Med, 7, p. a025510; de Jong, R.M., Tebeje, S.K., Meerstein-Kessel, L., Tadesse, F.G., Jore, M.M., Stone, W., Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites (2020) Immunol Rev, 293, pp. 190-215; Matuschewski, K., Getting infectious: formation and maturation of Plasmodium sporozoites in the Anopheles vector (2006) Cell Microbiol, 8, pp. 1547-1556. , COI: 1:CAS:528:DC%2BD28XhtFWgsb%2FJ; Bousema, T., Okell, L., Felger, I., Drakeley, C., Asymptomatic malaria infections: detectability, transmissibility and public health relevance (2014) Nat Rev Microbiol, 12, pp. 833-840. , COI: 1:CAS:528:DC%2BC2cXhslOktL%2FE; Lwin, K.M., Phyo, A.P., Tarning, J., Hanpithakpong, W., Ashley, E.A., Lee, S.J., Randomized, double-blind, placebo-controlled trial of monthly versus bimonthly dihydroartemisinin–piperaquine chemoprevention in adults at high risk of malaria (2012) Antimicrob Agents Chemother, 56, pp. 1571-1577. , COI: 1:CAS:528:DC%2BC38XjsVKlt7c%3D; Sikora, S.A., Poespoprodjo, J.R., Kenangalem, E., Lampah, D.A., Sugiarto, P., Laksono, I.S., Intravenous artesunate plus oral dihydroartemisinin-piperaquine or intravenous quinine plus oral quinine for optimum treatment of severe malaria: lesson learnt from a field hospital in Timika, Papua (2019) Indonesia Malar J, 18, p. 448. , COI: 1:CAS:528:DC%2BB3cXitVWjtg%3D%3D; Kakuru, A., Jagannathan, P., Muhindo, M.K., Natureeba, P., Awori, P., Nakalembe, M., Dihydroartemisinin–piperaquine for the prevention of malaria in pregnancy (2016) N Engl J Med, 374, pp. 928-939. , COI: 1:CAS:528:DC%2BC28XhtFKqurvI; Cheaveau, J., Mogollon, D.C., Mohon, M.A.N., Golassa, L., Yewhalaw, D., Pillai, D.R., Asymptomatic malaria in the clinical and public health context (2019) Expert Rev Anti Infect Ther, 17, pp. 997-1010. , COI: 1:CAS:528:DC%2BC1MXit1ajsbbE; Hsiang, M.S., Ntuku, H., Roberts, K.W., Dufour, M.K., Whittemore, B., Tambo, M., Effectiveness of reactive focal mass drug administration and reactive focal vector control to reduce malaria transmission in the low malaria-endemic setting of Namibia: a cluster-randomised controlled, open-label, two-by-two factorial design trial (2020) Lancet, 395, pp. 1361-1373. , COI: 1:CAS:528:DC%2BB3cXnvFKrurc%3D; Samuels, A.M., Odero, N.A., Odongo, W., Otieno, K., Were, V., Shi, Y.P., Impact of community-based mass testing and treatment on malaria infection prevalence in a high transmission area of western Kenya: a cluster randomized controlled trial (2020) Clin Infect Dis, , (online ahead of print; Mulebeke, R., Wanzira, H., Bukenya, F., Eganyu, T., Collborn, K., Elliot, R., Implementing population-based mass drug administration for malaria: experience from a high transmission setting in North Eastern Uganda (2019) Malar J, 18, p. 271; Sutanto, I., Kosasih, A., Elyazar, I.R.F., Simanjuntak, D.R., Larasati, T.A., Dahlan, M.S., Negligible impact of mass screening and treatment on mesoendemic malaria transmission at West Timor in eastern Indonesia: a cluster-randomized trial (2018) Clin Infect Dis, 67, pp. 1364-1372. , COI: 1:CAS:528:DC%2BC1MXhtlCmurbM; Larsen, D.A., Bennett, A., Silumbe, K., Hamainza, B., Yukich, J.O., Keating, J., Population-wide malaria testing and treatment with rapid diagnostic tests and artemether-lumefantrine in southern Zambia: a community randomized step-wedge control trial design (2015) Am J Trop Med Hyg, 92, pp. 913-921; Cook, J., Xu, W., Msellem, M., Vonk, M., Bergström, B., Gosling, R., Mass screening and treatment on the basis of results of a Plasmodium falciparum-specific rapid diagnostic test did not reduce malaria incidence in Zanzibar (2015) J Infect Dis, 211, pp. 1476-1483. , COI: 1:CAS:528:DC%2BC1cXhtV2hsrw%3D; Tiono, A.B., Guelbeogo, M.W., Sagnon, N.F., Nébié, I., Sirima, S.B., Mukhopadhyay, A., Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study (2013) BMC Infect Dis, 13, p. 535; Purba, I.E., Hadi, U.K., Hakim, L., (2017) Analisis Pengendalian Malaria Di Provinsi Nusa Tenggara Timur Dan Rencana Strategis Untuk Mencapai Eliminasi Malaria; Wampfler, R., Mwingira, F., Javati, S., Robinson, L., Betuela, I., Siba, P., Strategies for detection of Plasmodium species gametocytes (2013) PLoS ONE, 8. , COI: 1:CAS:528:DC%2BC3sXhsFOntb%2FI; Mangold, K.A., Manson, R.U., Koay, E.S., Stephens, L., Regner, M., Thomson, R.B., Jr., Real-time PCR for detection and identification of Plasmodium spp (2005) J Clin Microbiol, 43, pp. 2435-2440. , COI: 1:CAS:528:DC%2BD2MXkvFOqt7k%3D; Rosanas-Urgell, A., Mueller, D., Betuela, I., Barnadas, C., Iga, J., Zimmerman, P.A., Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea (2010) Malar J, 9, p. 361. , COI: 1:CAS:528:DC%2BC3cXhs1WqsbvL; Koepfli, C., Schoepflin, S., Bretscher, M., Lin, E., Kiniboro, B., Zimmerman, P.A., How much remains undetected? Probability of molecular detection of human Plasmodia in the field (2011) PLoS ONE, 6. , COI: 1:CAS:528:DC%2BC3MXls1Kku7c%3D; Nixon, C.P., Plasmodium falciparum gametocyte transit through the cutaneous microvasculature: a new target for malaria transmission blocking vaccines? (2016) Hum Vaccin Immunother, 12, pp. 3189-3195; Schneider, P., Bousema, J.T., Gouagna, L.C., Otieno, S., van de Vegte-Bolmer, M., Omar, S.A., Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection (2007) Am J Trop Med Hyg, 76, pp. 470-474; Robinson, L.J., Wampfler, R., Betuela, I., Karl, S., White, M.T., Li Wai Suen, C.S., Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model (2015) PLoS Med, 12; Eisele, T.P., Bennett, A., Silumbe, K., Finn, T.P., Porter, T.R., Chalwe, V., Impact of four rounds of mass drug administration with dihydroartemisinin-piperaquine implemented in Southern Province Zambia (2020) Am J Trop Med Hyg, 103, pp. 7-18

Indexed by Scopus

Leave a Comment