Foreshock–mainshock–aftershock sequence analysis of the 14 January 2021 (Mw 6.2) Mamuju–Majene (West Sulawesi, Indonesia) earthquake

Supendi P., Ramdhan M., Priyobudi, Sianipar D., Wibowo A., Gunawan M.T., Rohadi S., Riama N.F., Daryono, Prayitno B.S., Murjaya J., Karnawati D., Meilano I., Rawlinson N., Widiyantoro S., Nugraha A.D., Marliyani G.I., Palgunadi K.H., Elsera E.M.

Agency for Meteorology, Climatology, and Geophysics, Jakarta, 10720, Indonesia; Faculty of Earth Science and Technology, Institute of Technology Bandung (ITB), Bandung, Indonesia; Department of Earth Sciences-Bullard Labs, University of Cambridge, Cambridge, CB30EZ, United Kingdom; Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia; Faculty of Engineering, Maranatha Christian University, Bandung, 40164, Indonesia; Geological Engineering Department, Gadjah Mada University, Yogyakarta, 55281, Indonesia; Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Agency for Meteorology, Climatology, and Geophysics, Makasar, 90231, Indonesia


Abstract

We present here an analysis of the destructive Mw 6.2 earthquake sequence that took place on 14 January 2021 in Mamuju–Majene, West Sulawesi, Indonesia. Our relocated foreshocks, mainshock, and aftershocks and their focal mechanisms show that they occurred on two different fault planes, in which the foreshock perturbed the stress state of a nearby fault segment, causing the fault plane to subsequently rupture. The mainshock had relatively few aftershocks, an observation that is likely related to the kinematics of the fault rupture, which is relatively small in size and of short duration, thus indicating a high stress-drop earthquake rupture. The Coulomb stress change shows that areas to the northwest and southeast of the mainshock have increased stress, consistent with the observation that most aftershocks are in the northwest. [Figure not available: see fulltext.]. © 2021, The Author(s).

Earthquake; Mamuju–Majene; Relocation; Rupture; Stress-change


Journal

Earth, Planets and Space

Publisher: Springer Science and Business Media Deutschland GmbH

Volume 73, Issue 1, Art No 106, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106249606&doi=10.1186%2fs40623-021-01436-x&partnerID=40&md5=d1d7673c3c847b3c330dee3326e0218f

doi: 10.1186/s40623-021-01436-x

Issn: 13438832

Type: All Open Access, Gold, Green


References

Bellier, O., Sébrier, M., Seward, D., Beaudouin, T., Villeneuve, M., Putranto, E., Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi (Indonesia) (2006) Tectonophysics, 413, pp. 201-220; Bergman, S.C., Coffield, D.Q., Talbot, J.P., Garrard, R.A., Tertiary Tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia: evidence for a Miocene continent-continent collision (1996) Geol Soc Lond Spec Publ, 106, pp. 391-429; Billings, S.D., Simulated annealing for earthquake location (1994) Geophys J Int, 118, pp. 680-692; Brackenridge, R.E., Nicholson, U., Sapiie, B., Stow, D., Tappin, D.R., Indonesian Throughflow as a preconditioning mechanism for submarine landslides in the Makassar Strait (2020) Geol Soc Lond Spec Publ, 500, pp. 195-217; Bratt, S.R., Nagy, W., (1991) The LocSAT program, , Science Applications International Corporation (SAIC), San Diego; Budiman, R., Sahara, D.P., Nugraha, A.D., Determining Source model and aftershocks of 2006 Yogyakarta Earthquake, Indonesia using Coulomb stress change (2019) IOP Conf Ser Earth Environ Sci, 318, p. 012026; Dascher-Cousineau, K., Brodsky, E.E., Lay, T., Goebel, T.H.W., What controls variations in aftershock productivity? (2020) J Geophys Res Solid Earth; Efron, B., (1982) The Jackknife, the bootstrap and other resampling plans, , Society for Industrial and Applied Mathematics, Philadelphia; Ekström, G., Engdahl, E.R., Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska (1989) J Geophys Res Solid Earth, 94, pp. 15499-15519; Elburg, M.A., Leeuwen, T.V., FodenMuhardjo, J., Origin of geochemical variability by Arc-Continent Collision in the Biru Area, Southern Sulawesi (Indonesia) (2002) J Petrol, 43, pp. 581-606; Fitch, T.J., Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific (1972) J Geophys Res, 77, pp. 4432-4460; Friederich, W., Dalkolmo, J., Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green’s function in the frequency domain (1995) Geophys J Int, 122, pp. 537-550; Gusman, A.R., Supendi, P., Nugraha, A.D., Power, W., Latief, H., Sunendar, H., Widiyantoro, S., Daryono, M.D., Source model for the Tsunami inside Palu Bay following the 2018 Palu Earthquake, Indonesia (2019) Geophys Res Lett, 46, pp. 8721-8730; Hall, R., Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations (2002) J Asian Earth Sci, 20, pp. 353-431; Hall, R., Wilson, M.E.J., Neogene sutures in eastern Indonesia (2000) J Asian Earth Sci, 18, pp. 781-808; Hall, R., Clements, B., Smyth, H.R., Sundaland: Basement character, structure and plate tectonic development (2009) Proc Indon Petrol Assoc, , 33rd annual convention; Hall, R., Cottam, M.A., Wilson, M.E.J., The SE Asian gateway: history and tectonics of Australia–Asia collision (2011) Geol Soc Lond Spec Publ, 355, pp. 1-6; Hamilton, W.B., Tectonics of the Indonesian region. Tectonic of the Indonesian Region (1979) US Geol Surv Prof Pap, 1078 (345); Hao, J., Ji, C., Wang, W., Yao, Z., Rupture history of the 2013 Mw 6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves: slip model of the 2013 Lushan earthquake (2013) Geophys Res Lett, 40, pp. 5371-5376; The SeisComP seismological software package (2008) GFZ Data Services; Irsyam, M., Widiyantoro, S., Natawidjaja, D.H., Meilano, I., Rudyanto, A., Hidayati, S., Triyoso, W., Faizal, L., Sunarjito (eds) (2017) Peta sumber dan bahaya gempa Indonesia tahun 2017, Cetakan pertama. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum, Bandung (in Indonesian); Irsyam, M., Cummins, P.R., Asrurifak, M., Faizal, L., Natawidjaja, D.H., Widiyantoro, S., Meilano, I., Syahbana, A.J., Development of the 2017 national seismic hazard maps of Indonesia (2020) Earthq Spectra; Ji, C., Wald, D.J., Helmberger, D.V., Source description of the 1999 Hector Mine, California, earthquake, part I: wavelet domain inversion theory and resolution analysis (2002) Bull Seismol Soc Am, 92, pp. 1192-1207; Ji, C., Helmberger, D.V., Wald, D.J., Ma, K.-F., Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake: slip history of the 1999 Chi-Chi Earthquake (2003) J Geophys Res Solid Earth, 108, p. 2412; Kanamori, H., Anderson, D.L., Theoretical basis of some empirical relations in seismology (1975) Bull Seismol Soc Am, 65, pp. 1073-1095; Katili, J.A., Past and present geotectonic position of Sulawesi, Indonesia (1978) Tectonophysics, 45, pp. 289-322; Kennett, B.L.N., Engdahl, E.R., Traveltimes for global earthquake location and phase identification (1991) Geophys J Int, 105, pp. 429-465; King, G.C.P., Stein, R.S., Lin, J., Static stress changes and the triggering of earthquakes (1994) Bull Seismol Soc Am, 84, pp. 935-953; Kissling, E., (1995) Program VELEST user’s guide—short introduction (second draft version), p. 26. , Institute of Geophysics, ETH Zurich, Zurich; Kissling, E., Ellsworth, W.L., Eberhart-Phillips, D., Kradolfer, U., Initial reference models in local earthquake tomography (1994) J Geophys Res, 99, pp. 19635-19646; Lander, F., Whiteside, L.S., Lockridge, P.A., Two decades of global tsunamis (1982–2002) (2003) Sci Tsunami Hazards, 21 (1), pp. 3-88; Laske, G., Masters, G., Ma, Z., Pasyanos, M., (2013), Update on CRUST1.0—A 1-degree global model of earth’s crust. Geophys Res 15, Abstract EGU2013-2658; Miller, S.A., Aftershocks are fluid-driven and decay rates controlled by permeability dynamics (2020) Nat Commun, 11, p. 5787; Minson, S.E., Dreger, D.S., Stable inversion for the complete moment tensor algorithm (2008) Geophys J Int, 174, pp. 585-592; Morley, C.K., King, R., Hillis, R., Tingay, M., Backe, G., Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: a review (2011) Earth-Sci Rev, 104, pp. 41-91; Muzli, M., Umar, M., Nugraha, A.D., Bradley, K.E., Widiyantoro, S., Erbas, K., Jousset, P., Wei, S., The 2016 Mw 6.5 Pidie Jaya, Aceh, North Sumatra, earthquake: reactivation of an unidentified sinistral fault in a region of distributed deformation (2018) Seismol Res Lett, 89, pp. 1761-1772; Parkinson, C.D., The petrology, structure and geologic history of the metamorphic rocks of Central Sulawesi (1991) Indonesia, , PhD thesis, University of London); Parkinson, C.D., Miyazaki, K., Wakita, K., Barber, A.J., Carswell, D.A., An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia (1998) Isl Arc, 7, pp. 184-200; Prasetya, G.S., De Lange, W.P., Healy, T.R., The makassar strait Tsunamigenic Region, Indonesia (2001) Nat Hazards, 24, pp. 295-307; Puspita, S.D., Structural styles of the offshore West Sulawesi fold belt, North Makassar straits, Indonesia (2005) Proc Indon Petrol Assoc 30Th Ann Conv Indonesian Petroleum Association, , IPA; Sallarès, V., Ranero, C.R., Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes (2019) Nature, 576, pp. 96-101; Sen, A.T., Cesca, S., Lange, D., Dahm, T., Tilmann, F., Heimann, S., Systematic changes of earthquake rupture with depth: a case study from the 2010 M w 8.8 Maule, Chile, earthquake aftershock sequence (2015) Bull Seismol Soc Am, 105, pp. 2468-2479; Shao, G., Li, X., Ji, C., Maeda, T., Focal mechanism and slip history of the 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with tele seismic body and surface waves (2011) Earth Planet Space, 63, pp. 559-564; Simandjuntak, T.O., (1986) Sedimentology and Tectonics of the Collision Complex in the East Arm of Sulawesi, Indonesia, , PhD Thesis, RHBNC University of London, UK; Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., Ambrosius, B., Spakman, W., Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data (2006) J Geophys Res; Stein, R.S., Lisowski, M., The 1979 Homestead Valley earthquake sequence, California: control of aftershocks and postseismic deformation (1983) J Geophys Res, 88, p. 6477; Sukamto, R., Reconnaissance geological map of Palu area, Central Sulawesi (1973) Scale 1:250.000, Geological Survey of Indonesia; Supendi, P., Nugraha, A.D., Widiyantoro, S., Hypocenter relocation of the aftershocks of the Poso, Sulawesi (Mw 6.6, May 29, 2017) event using the BMKG network data. In: AIP Conf Proc (2018) Pp 020076; Supendi, P., Nugraha, A.D., Widiyantoro, S., Pesicek, J.D., Thurber, C.H., Abdullah, C.I., Daryono, D., Rosalia, S., Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences (2020) Geophys J Int, 221, pp. 1845-1855; Toda, S., Stein, R.S., Sevilgen, V., Lin, J., Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide (2011) USGS Open File Report 2011–1060, 63, p. p; van Leeuwen, T., Allen, C.M., Kadarusman, A., Elburg, M., Palin, J.M., Muhardjo, S., Petrologic, isotopic, and radiometric age constraints on the origin and tectonic history of the Malino Metamorphic Complex, NW Sulawesi, Indonesia (2007) J Asian Earth Sci, 29, pp. 751-777; Waldhauser, F., HypoDD-a program to compute double-difference hypocenter locations (2001) USGS Open File Report 2001-113, , https://doi.org/10.3133/ofr01113; Waldhauser, F., Ellsworth, W.L., A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California (2000) Bull Seismol Soc Am, 90, pp. 1353-1368; Walter, T.R., Wang, R., Luehr, B.-G., Wassermann, J., Behr, Y., Parolai, S., Anggraini, A., Zschau, J., The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: did lahar deposits amplify ground shaking and thus lead to the disaster? (2008) Geochem Geophys; Wang, S., Xu, C., Xu, W., Yin, Z., Wen, Y., Jiang, G., The 2017 Mw 6.6 poso earthquake: implications for extrusion tectonics in Central Sulawesi (2019) Seismol Res Lett, 90, pp. 649-658; Watkinson, I.M., Ductile flow in the metamorphic rocks of central Sulawesi (2011) Geol Soc Lond Spec Publ, 355, pp. 157-176; Wells, D.L., Coppersmith, K.J., New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement (1994) Bull Seismol Soc Am, 84, pp. 974-1002; Wessel, P., Smith, W.H.F., New improved version of Generic Mapping Tools released (1998) EOS Trans Am Geophys Union, 79, p. 579; Wu, J., McClay, K., de Vera, J., Growth of triangle zone fold-thrusts within the NW Borneo deep-water fold belt, offshore Sabah, southern South China Sea (2020) Geosphere, 16, pp. 329-356; Yan, D.-P., Xu, Y.-B., Dong, Z.-B., Qiu, L., Zhang, S., Wells, M., Fault-related fold styles and progressions in fold-thrust belts: insights from sandbox modeling: sandbox modeling the fold-thrust belts (2016) J Geophys Res Solid Earth, 121, pp. 2087-2111; Ye, L., Lay, T., Kanamori, H., Rivera, L., Rupture characteristics of major and great (Mw≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships (2016) J Geophys Res Solid Earth, 121, pp. 826-844

Indexed by Scopus

Leave a Comment