Fabrication and characterization of woven and non-woven textiles derived from natural resources

Nikmatin S., Irmansyah I., Indro M.N., Hendra M., Setiawan T., Syafiuddin A.

Department of Physics, IPB University (Bogor Agricultural University), West Java, Bogor, 16680, Indonesia; Surfactant and Bioenergy Research Center (SBRC), IPB University (Bogor Agricultural University), West Java, Bogor, 16680, Indonesia; Center of textiles, West Java, Bandung, 40272, Indonesia; Department of Public Health, Universitas Nahdlatul Ulama Surabaya, East Java, Surabaya, 60237, Indonesia


The present work investigated the properties of long fibers derived from oil palm empty fruit bunches (OPEFB) for the potential woven and non-woven textiles production. Several characterizations such as XRD, FTIR, SEM-EDX, DSC, and mechanical testing were carried out to understand the properties comprehensively. This study found that the OPEFB has the potential for the production of woven and non-woven textiles. The properties of OPEFB fibers were comparable with synthetics fibers that are commonly used in the textile industry. XRD analysis confirmed the structural properties, while the FTIR showed the biomolecules’ bonding characteristics. In general, the physical and mechanical properties of the OPEFB fibers depend on surface modification and chemical treatments. © 2021 by the authors.

Mechanical properties; Natural fibers; Oil palm empty bunches


Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 2, Art No , Page 1814 – 1823, Page Count

Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110178801&doi=10.33263%2fBRIAC122.18141823&partnerID=40&md5=ce1d67ab79c698a924481708f1a8b87f

doi: 10.33263/BRIAC122.18141823

Issn: 20695837



Aisyah, H.A., Paridah, M.T., Sapuan, S.M., Ilyas, R.A., Khalina, A., Nurazzi, N.M., Lee, S.H., Lee, C.H., A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites (2021) Polymers, 13, p. 471. , https://doi.org/10.3390/polym13030471; Gholampour, A., Ozbakkaloglu, T., A review of natural fiber composites: properties, modification and processing techniques, characterization, applications (2020) J. Mater. Sci, 55, pp. 829-892. , https://doi.org/10.1007/s10853-019-03990-y; Korzeniewska, E., De Mey, G., Pawlak, R., Stempień, Z., Analysis of resistance to bending of metal electroconductive layers deposited on textile composite substrates in PVD process (2020) Sci. Rep, 10, p. 8310. , https://doi.org/10.1038/s41598-020-65316-2; Nadzri, S.N.I.H.A., Sultan, M.T.H., Shah, A.U.M., Safri, S.N.A., Talib, A.R.A., Jawaid, M., Basri, A.A., A comprehensive review of coconut shell powder composites: Preparation, processing, and characterization (2020) J. Thermoplast. Compos. Mater, , https://doi.org/10.1177/0892705720930808; Nikmatin, S., Hermawan, B., Irmansyah, I., Indro, M.N., Kueh, A.B.H., Syafiuddin, A., Evaluation of the Performance of Helmet Prototypes Fabricated from Acrylonitrile Butadiene Styrene Composites Filled with Natural Resource (2019) Materials, 12, p. 34. , https://doi.org/10.3390/ma12010034; Nikmatin, S., Syafiuddin, A., Hong Kueh, A.B., Maddu, A., Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles (2017) J. Appl. Res. Technol, 15, pp. 386-395. , https://doi.org/10.1016/j.jart.2017.03.008; Tang, P.L., Hong, W.L., Yue, C.S., Harun, S., Palm oil mill effluent as the pretreatment solvent of oil palm empty fruit bunch fiber for fermentable sugars production (2020) Bioresour. Technol, 314, p. 123723. , https://doi.org/10.1016/j.biortech.2020.123723; Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S., Morphological and chemo-thermal changes of oven-heat treated oil palm empty fruit bunch fibers during dry disk milling (2017) J. Indian Acad. Wood Sci, 14, pp. 9-17. , https://doi.org/10.1007/s13196-016-0182-6; Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S., Novel Isolation of Empty Fruit Bunch Lignocellulose Nanofibers Using Different Vibration Milling Times-Assisted Multimechanical Stages (2017) Waste Biomass Valorization, 8, pp. 2451-2462. , https://doi.org/10.1007/s12649-016-9765-0; Ng, K.H., Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment: Strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia (2021) Chemosphere, 270, p. 129378. , https://doi.org/10.1016/j.chemosphere.2020.129378; Cheng, Y.W., Chong, C.C., Lam, M.K., Ayoub, M., Cheng, C.K., Lim, J.W., Yusup, S., Bai, J., Holistic process evaluation of non-conventional palm oil mill effluent (POME) treatment technologies: A conceptual and comparative review (2021) J. Hazard. Mater, 409, p. 124964. , https://doi.org/10.1016/j.jhazmat.2020.124964; Moksin, N.S.A., Ong, Y.P., Ho, L.-N., Tay, M.G., Optimization of photocatalytic fuel cells (PFCs) in the treatment of diluted palm oil mill effluent (POME) (2021) J. Water Process. Eng, 40, p. 101880. , https://doi.org/10.1016/j.jwpe.2020.101880; Lai, D.S., Osman, A.F., Adnan, S.A., Ibrahim, I., Alrashdi, A.A., Ahmad Salimi, M.N., Ul-Hamid, A., On the Use of OPEFB-Derived Microcrystalline Cellulose and Nano-Bentonite for Development of Thermoplastic Starch Hybrid Bio-Composites with Improved Performance (2021) Polymers, 13, p. 897. , https://doi.org/10.3390/polym13060897; Karunakaran, V., Abd-Talib, N., Kelly Yong, T.-L., Lignin from oil palm empty fruit bunches (EFB) under subcritical phenol conditions as a precursor for carbon fiber production (2020) Mater. Today, 31, pp. 100-105. , https://doi.org/10.1016/j.matpr.2020.01.252; Ismail, F., Othman, N.E.A., Wahab, N.A., Aziz, A.A., Influence of Sulphuric Acid Concentration on the Physico-Chemical Properties of Microfibrillated Cellulose from Oil Palm Empty Fruit Bunch Fibre (2020) J. Oil Palm Res, 32, pp. 621-629. , https://doi.org/10.21894/jopr.2020.0057; Abu-Thabit, N.Y., Judeh, A.A., Hakeem, A.S., Ul-Hamid, A., Umar, Y., Ahmad, A., Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.) (2020) Int. J. Biol. Macromol, 155, pp. 730-739. , https://doi.org/10.1016/j.ijbiomac.2020.03.255; Ramlee, N.A., Naveen, J., Jawaid, M., Potential of oil palm empty fruit bunch (OPEFB) and sugarcane bagasse fibers for thermal insulation application – A review (2021) Constr Build Mater, 271, p. 121519. , https://doi.org/10.1016/j.conbuildmat.2020.121519; Zailuddin, N.L.I., Osman, A.F., Rahman, R., Morphology, mechanical properties, and biodegradability of all-cellulose composite films from oil palm empty fruit bunch (2020) SPE Polymers, 1, pp. 4-14. , https://doi.org/10.1002/pls2.10008; Lona Batista, N., Anagnostopoulos, K., Cocchieri Botelho, E., Kim, H., Influence of crystallinity on interlaminar fracture toughness and impact properties of polyphenylene sulfide/carbon fiber laminates (2021) Eng. Failure Anal, 119, p. 104976. , https://doi.org/10.1016/j.engfailanal.2020.104976; Kar Mun Amelia, C., Yong Ng, L., Yin Ng, C., Mahmoudi, E., Hanis Hayati Hairom, N., Keat Mah, S., Polyethersulfone-cellulose composite thin film incorporated with regenerated-cellulose extracted from empty fruit bunches of elaeis guineensis (2021) Mater. Today, , https://doi.org/10.1016/j.matpr.2021.01.776; Wang, J., Li, X., Cheng, Q., Lv, F., Chang, C., Zhang, L., Construction of β-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties (2020) Carbohydr. Polym, 229, p. 115470. , https://doi.org/10.1016/j.carbpol.2019.115470; Zhang, L., Li, X., Zhang, S., Gao, Q., Lu, Q., Peng, R., Xu, P., Zou, H., Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers (2021) Anal. Bioanal. Chem, 413, pp. 1313-1320. , https://doi.org/10.1007/s00216-020-03094-6; Kubovský, I., Kačíková, D., Kačík, F., Structural Changes of Oak Wood Main Components Caused by Thermal Modification (2020) Polymers, 12, p. 485. , https://doi.org/10.3390/polym12020485; Isroi, Ishola, M.M., Millati, R., Syamsiah, S., Cahyanto, M.N., Niklasson, C., Taherzadeh, M.J., Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment (2012) Molecules, 17, pp. 14995-15012. , https://doi.org/10.3390/molecules171214995; Abdul Karim, M.H., Mohd Shah, M.K., Jundam, M.F., Abdullah, S., Investigation of Tensile Properties of the Eco-Board of Hybrid Composite that Consist Of Oil Palm Empty Fruit Bunch (OPEFB) Fiber Added with Rice Husk (2020) IOP Conf Ser Mater Sci Eng, 834, p. 012012. , https://doi.org/10.1088/1757-899x/834/1/012012; Djafari Petroudy, S.R., 3-Physical and mechanical properties of natural fibers (2017) Advanced High Strength Natural Fibre Composites in Construction, pp. 59-83. , https://doi.org/10.1016/B978-0-08-100411-1.00003-0, Fan, M. and Fu, F., Eds.; Woodhead Publishing; Zailuddin, N.L.I., Osman, A.F., Rahman, R., Effect of Chemical Treatment on Tensile Properties of Oil Palm Empty Fruit Bunch (OPEFB)-based All Cellulose Composite (ACC) Films (2020) IOP Conf Ser Mater Sci Eng, 957, p. 012004. , https://doi.org/10.1088/1757-899x/957/1/012004; Serra-Parareda, F., Tarrés, Q., Espinach, F.X., Vilaseca, F., Mutjé, P., Delgado-Aguilar, M., Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials (2020) Int. J. Biol. Macromol, 155, pp. 81-90. , https://doi.org/10.1016/j.ijbiomac.2020.03.160; Nikmatin, S., Syafiuddin, A., Irwanto, D.A.Y., Properties of oil palm empty fruit bunch-filled recycled acrylonitrile butadiene styrene composites: Effect of shapes and filler loadings with random orientation (2016) BioResources, 12, pp. 1090-1101. , https://doi.org/10.15376/biores.12.1.1090-1101; Nikmatin, S., Syafiuddin, A., Kueh, A.B.H., Purwanto, Y.A., Effects of nanoparticle filler on thermo-physical properties of rattan powder-filled polypropylene composites (2015) Jur. Tek, 77, pp. 181-187. , https://doi.org/10.11113/jt.v77.6415; Syafiuddin, A., Fulazzaky, M.A., Salmiati, S., Kueh, A.B.H., Fulazzaky, M., Salim, M.R., Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review (2020) Nano. Env. Engg, 5, pp. 1-18. , https://doi.org/10.1007/s41204-019-0065-3; Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A.B.H., Salim, M.R., Novel weed-extracted silver nanoparticles and their antibacterial appraisal against a rare bacterium from river and sewage treatment plan (2018) Nanomaterials, 8, pp. 1-17. , https://doi.org/10.3390/nano8010009; Syafiuddin, A., Salmiati, S., Hadibarata, T., Salim, M.R., Kueh, A.B.H., Suhartono, S., Removal of silver nanoparticles from water environment: Experimental, mathematical formulation, and cost analysis (2019) Water Air Soil Pollut, 230, pp. 102-117. , https://doi.org/10.1007/s11270-019-4143-8; Mostafa, A.A.-F., Elshikh, M.S., Al-Askar, A.A., Hadibarata, T., Yuniarto, A., Syafiuddin, A., Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium (2019) Bioprocess Biosyst. Eng, 42, pp. 1483-1494. , https://doi.org/10.1007/s00449-019-02144-3; Nurul Aini, A., Al Farraj, D.A., Endarko, E., Rubiyanto, A., Nur, H., Al Khulaifi, M.M., Hadibarata, T., Syafiuddin, A., A new green method for the synthesis of silver nanoparticles and their antibacterial activities against gram‐positive and gram‐negative bacteria (2019) J. Chin. Chem. Soc, 66, pp. 705-712. , https://doi.org/10.1002/jccs.201800412; Syafiuddin, A., Fulazzaky, M.A., Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi (2021) Biotechnol. Rep, 29, p. e00573. , https://doi.org/10.1016/j.btre.2020.e00573; Al Farraj, D.A., Hadibarata, T., Yuniarto, A., Alkufeidy, R.M., Alshammari, M.K., Syafiuddin, A., Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon (2020) Bioprocess Biosyst. Eng, 43, pp. 2305-2314. , https://doi.org/10.1007/s00449-020-02415-4; Kueh, A.B.H., Spent ground coffee–awaking the sustainability prospects (2021) Environ. Toxicol. Manage, 1, pp. 1-6. , https://doi.org/10.33086/etm.v1i1.2016; Mahmud, K.N., Wen, T.H., Zakaria, Z.A., Activated carbon and biochar from pineapple waste biomass for the removal of methylene blue (2021) Environ. Toxicol. Manage, 1, pp. 30-36. , https://doi.org/10.33086/etm.v1i1.2036

Indexed by Scopus

Leave a Comment