Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification

Adina S.R., Suwanto A., Meryandini A., Puspitasari E.

Graduate School of Microbiology, Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia; Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, 16680, Indonesia; Department of Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi, 17530, Indonesia


Background: Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results: LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions: This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel. © 2021, The Author(s).

Biodiesel; Codon optimization; Lipase; Micrococcus luteus; Pichia pastoris


Journal of Genetic Engineering and Biotechnology

Publisher: Springer Science and Business Media Deutschland GmbH

Volume 19, Issue 1, Art No 55, Page – , Page Count

Journal Link:

doi: 10.1186/s43141-021-00155-w

Issn: 1687157X

Type: All Open Access, Gold


Jaeger, K.E., Dijkstra, B.W., Reetz, M.T., Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases (1999) Annu Rev Microbiol, 53 (1), pp. 315-351; Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Thim, L., A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex (1991) Nature., 351 (6326), pp. 491-494; Houde, A., Kademi, A., Leblanc, D., Lipases and their industrial applications: an overview (2004) Appl Biochem Biotechnol, 118 (1-3), pp. 155-170; Hasan, F., Shah, A.A., Hameed, A., Industrial applications of microbial lipases (2006) Enzym Microb Technol, 39, pp. 235-251; Amini, Z., Ilham, Z., Ong, H.C., Mazaheri, H., Chen, W.H., State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production (2017) Energy Convers Manag, 141, pp. 339-353; Ma, B., Cheong, L.Z., Weng, X., Tan, C.P., Shen, C., Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion (2018) Electrochim Acta, 283, pp. 509-516; Wang, J., Wu, Z., Zhang, T., Wang, Y., Yang, B., High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies (2019) 3 Biotech, 9 (62), pp. 1-9; Park, S.H., Kim, S.J., Park, S., Kim, H.K., Characterization of organic solvent-tolerant lipolytic enzyme from Marinobacter lipolyticus isolated from the Antarctic Ocean (2019) Appl Biochem Biotechnol, 187 (3), pp. 1046-1060; Jeon, J.H., Kim, J.T., Kim, Y.J., Kim, H.K., Lee, H.S., Kang, S.G., Kim, S.J., Lee, J.H., Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome (2009) Appl Microbiol Biotechnol, 81 (5), pp. 865-874; Mhetras, N., Patil, S., Gokhale, D., Lipase of Aspergillus niger NCIM 1207: a potential biocatalyst for synthesis of isoamyl acetate (2010) Indian J Microbiol, 50 (4), pp. 432-437; Rocha, J.M.S., Gil, M.H., Garcia, F.A.P., Optimisation of the enzymatic synthesis of n-octyl oleate with immobilised lipase in the absence of solvents (1999) J Chem Technol Biotechnol, 74 (7), pp. 607-612; Yan, J., Han, B., Gui, X., Wang, G., Xu, L., Yan, Y., Madzak, C., Jiao, L., Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed (2018) Sci Rep, 8 (1), pp. 1-10; Knob, A., Izidoro, S.C., Lacerda, L.T., Rodrigues, A., de Lima, V.A., A novel lipolytic yeast Meyerozyma guilliermondii: efficient and low-cost production of acid and promising feed lipase using cheese whey (2020) Biocatal Agric Biotechnol, 24, p. 101565; Ramani, K., Chockalingam, E., Sekaran, G., Production of a novel extracellular acidic lipase from pseudomonas gessardii using slaughterhouse waste as a substrate (2010) J Ind Microbiol Biotechnol, 37 (5), pp. 531-535; Mahadik, N.D., Bastawde, K.B., Puntambekar, U.S., Khire, J.M., Gokhale, D.V., Production of acidic lipase by a mutant of Aspergillus niger NCIM 1207 in submerged fermentation (2004) Process Biochem, 39 (12), pp. 2031-2034; Gutarra, M.L.E., Godoy, M.G., Maugeri, F., Rodrigues, M.I., Freire, D.M.G., Castilho, L.R., Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation (2009) Bioresour Technol, 100 (21), pp. 5249-5254; Liu, G., Hu, S., Li, L., Hou, Y., Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512 (2015) Lipids, 50 (11), pp. 1155-1163; Zhang, X.F., Ai, Y.H., Xu, Y., Yu, X.W., High-level expression of Aspergillus niger lipase in Pichia pastoris: characterization and gastric digestion in vitro (2019) Food Chem, 274, pp. 305-313; Yuan, Z.S., Yan, X., Wei, Y.X., Improved homologous expression of the acidic lipase from Aspergillus niger (2020) J Microbiol Biotechnol, 30 (2), pp. 196-205; Panizza, P., Syfantou, N., Pastor, F.I.J., Rodríguez, S., Díaz, P., Acidic lipase lip I.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols (2013) J Appl Microbiol, 114 (3), pp. 722-732; Shi, H., Meng, Y., Yang, M., Zhang, Q., Meng, Y., Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus (2014) Biotechnol Appl Biochem, 61 (2), pp. 165-174; Ramakrishnan, V., Goveas, L.C., Halami, P.M., Narayan, B., Kinetic modeling, production and characterization of an acidic lipase produced by Enterococcus durans NCIM5427 from fish waste (2015) J Food Sci Technol, 52 (3), pp. 1328-1338; de Almeida, A.F., Tauk-Tornisielo, S.M., Carmona, E.C., Acid lipase from Candida viswanathii: production, biochemical properties, and potential application (2013) Biomed Res Int, 2013, pp. 1-10; Saranya, P., Sukanya Kumari, H., Prasad Rao, B., Sekaran, G., Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater (2014) Environ Sci Pollut Res, 21 (5), pp. 3907-3919; Saranya, P., Kumari, H.S., Jothieswari, M., Rao, B.P., Sekaran, G., Novel extremely acidic lipases produced from Bacillus species using oil substrates (2014) J Ind Microbiol Biotechnol, 41 (1), pp. 9-15; Sun, Q., Wang, H., Zhang, H., Luo, H., Shi, P., Bai, Y., Lu, F., Huang, H., Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1 (2016) J Biosci Bioeng, 122 (5), pp. 539-544; Rade, L.L., da Silva, M.N.P., Vieira, P.S., Milan, N., de Souza, C.M., de Melo, R.R., Klein, B.C., Zanphorlin, L.M., A novel fungal lipase with methanol tolerance and preference for macaw palm oil (2020) Front Bioeng Biotechnol, 8, pp. 1-15; Nur, N., (2019) Bioprospeksi lipase Asal Tempe Indonesia: Isolasi, Identifikasi, Kloning, dan Karakterisasi lipase novel dari Micrococcus luteus EMP48-D, , Dissertation, IPB University; Monsalve, R.I., Lu, G., King, T.P., Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast (1999) Protein Expr Purif, 16 (3), pp. 410-416; Macauley-Patrick, S., Fazenda, M.L., McNeil, B., Harvey, L.M., Heterologous protein production using the Pichia pastoris expression system (2005) Yeast, 22 (4), pp. 249-270; Wegner, G.H., Emerging applications of the methylotrophic yeasts (1990) FEMS Microbiol Lett, 87 (3-4), pp. 279-283; Daly, R., Hearn, M.T.W., Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineenring and production (2005) J Mol Recognit, 18 (2), pp. 119-138; Gasser, B., Prielhofer, R., Marx, H., Maurer, M., Nocon, J., Steiger, M., Puxbaum, V., Mattanovich, D., Pichia pastoris: protein production host and model organism for biomedical research (2013) Future Microbiol, 8 (2), pp. 191-208; Nur, N., Meryandini, A., Suhartono, M.T., Suwanto, A., Lipolytic bacteria and the dynamics of flavor production in Indonesian tempeh (2020) Biodiversitas, 21, pp. 3818-3825; Puigbò, P., Guzmán, E., Romeu, A., Garcia-Vallvé, S., OPTIMIZER: a web server for optimizing the codon usage of DNA sequences (2007) Nucleic Acids Res, 33 (Web Server), pp. W126-W131; Chozhavendhan, S., Singh, M.V.P., Fransila, B., Kumar, R.P., Devi, G.K., A review on influencing parameters of biodiesel production and purification processes (2020) Curr Res Green Sustain Chem, 1-2, pp. 1-6; Kurtzman, C.P., Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis (2009) J Ind Microbiol Biotechnol, 36 (11), pp. 1435-1438; Li, X., Liu, Z., Wang, G., Pan, D., Jiao, L., Yan, Y., Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris (2016) Enzym Microb Technol, 82, pp. 115-124; Raab, D., Graf, M., Notka, F., Schödl, T., Wagner, R., The gene Optimizer algorithm: using a sliding window approach to cope with the vast sequence space in multiparameter DNA sequence optimization (2010) Syst Synth Biol, 4 (3), pp. 215-225; Al-Hawash, A.B., Zhang, X., Ma, F., Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems (2017) Gene Rep, 9, pp. 46-53; Gaspar, P., Oliveira, J.L., Frommlet, J., Santos, M.A.S., Moura, G., EuGene: maximizing synthetic gene design for heterologous expression (2012) Bioinformatics, 28 (20), pp. 2683-2684; Wright, F., The “effective number of codons” used in a gene (1990) Gene, 87 (1), pp. 23-29; Crick, F., Barnett, L., Brenner, S., Watts-Tobin, R., General nature of the genetic code for proteins (1961) Nature, 192 (4809), pp. 1227-1232; Sharp, P.M., Li, W.H., The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications (1987) Nucleic Acids Res, 15 (3), pp. 1281-1295; Hershey, J.W.B., Sonenberg, N., Mathews, M.B., Principles of translational control (2019) Cold Spring Harb Perspect Biol, 11 (9), p. a032607; Zhou, W.J., Yang, J.K., Mao, L., Miao, L.H., Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris (2015) Enzym Microb Technol, 71, pp. 66-72; Wang, J., Liu, Y., Guo, X., Dong, B., Cao, Y., High-level expression of lipase from Galactomyces geotrichum mafic-0601 by codon optimization in Pichia pastoris and its application in hydrolysis of various oils (2019) 3 Biotech, 9 (10), p. 354; Nisha, P., Nayana, M., Asokan, A., Production of lipase from Micrococcus flavus and influence of bioparameters (2014) IOSR J Pharm Biol Sci, 9 (2), pp. 67-72; Nisha, P., Nayana, M., Varghese, V., Deepalekshmi, K., Deepthi, M.D., Lipase production at different bio parameters using Micrococcus roseus isolated from Vembanattu lake (2013) Int J Adv Lif Sci, 6 (5), pp. 490-496; Prada, F., Ayala-Diaz, I.M., Delgado, W., Ruiz-Romero, R., Romero, H.M., Effect of fruit ripening on content and chemical composition of oil from three oil palm cultivars (Elaeis guineensis Jacq.) grown in Colombia (2011) J Agric Food Chem, 59 (18), pp. 10136-10142; Sambanthamurthi, R., Sundram, K., Tan, Y.A., Chemistry and biochemistry of palm oil (2000) Prog Lipid Res, 39 (6), pp. 507-558; Doukyu, N., Ogino, H., Organic solvent-tolerant enzymes (2010) Biochem Eng J, 48 (3), pp. 270-282; Song, X., Qi, X., Hao, B., Qu, Y., Studies of substrate specificities of lipases from different sources (2008) Eur J Lipid Technol, 110 (12), pp. 1095-1101; Zaks, A., Klibanov, A.M., Enzyme-catalyzed processes in organic solvents (1987) Proc Natl Acad Sci, 82 (1 Enzyme Engine), pp. 3192-3196; Parwata, I.P., Asyari, M., Hertadi, R., Organic solvent-stable lipase from moderate halophilic bacteria Pseudomonas stutzeri isolated from the mud crater of Bleduk Kuwu, Central Java, Indonesia (2014) J Pure Appl Microbiol, 8 (1), pp. 31-40; Gilbert, E.J., Drozd, J.W., Jones, C.W., Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF-2 (1991) J Gen Microbiol, 137 (9), pp. 2215-2221; Abdul Kapor, N.Z., Maniam, G.P., Rahim, M.H.A., Yusoff, M.M., Palm fatty acid distillate as a potential source for biodiesel production-a review (2017) J Clean Prod, 143, pp. 1-9; Noraini, M.Y., Ong, H.C., Badrul, M.J., Chong, W.T., A review on potential enzymatic reaction for biofuel production from algae (2014) Renew Sust Energ Rev, 39, pp. 24-34; Demirbas, A., Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods (2005) Progr Energ Combust Sci, 31 (5-6), pp. 466-487; Corrêa, I.N.D.S., de Souza, S.L., Catran, M., Bernardes, O.L., Portilho, M.F., Langone, M.A.P., Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining (2011) Enzyme Res, 2011, pp. 1-8

Indexed by Scopus

Leave a Comment