Complete mitochondrial genomes and phylogenetic relationships of the genera Nephila and Trichonephila (Araneae, Araneoidea)

Yong H.-S., Song S.-L., Chua K.-O., Wayan Suana I., Eamsobhana P., Tan J., Lim P.-E., Chan K.-G.

Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; Institute for Advanced Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia; Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia; Faculty of Science and Mathematics, Mataram University, Mataram, Indonesia; Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Department of Agricultural and Food Science, Universiti Tunku Abdul Rahman, Kampar, Perak 31900, Malaysia; Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China


Abstract

Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics. © 2021, The Author(s).


Journal

Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 10680, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106598379&doi=10.1038%2fs41598-021-90162-1&partnerID=40&md5=b351ec7570592cb1f67927f1fe277b26

doi: 10.1038/s41598-021-90162-1

Issn: 20452322

Type: All Open Access, Gold, Green


References

Kuntner, M., Hamilton, C.A., Cheng, R.-C., Gregorič, M., Lupše, N., Lokovšek, T., Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism (2019) Syst. Biol., 68, pp. 555-572. , PID: 30517732; (2020), http://wsc.nmbe.ch, Accessed; Kuntner, M., Coddington, J.A., Discovery of the largest orbweaving spider species: the evolution of gigantism in Nephila (2009) PLoS ONE, 4. , PID: 19844575, COI: 1:CAS:528:DC%2BD1MXhsVaku7jE; Harvey, M.S., Austin, A.D., Adams, M., The systematics and biology of the spider genus Nephila (Araneae: Nephilidae) in the Australasian region (2007) Invertebr. Syst., 21, pp. 407-451; Kuntner, M., Phylogenetic systematics of the Gondwanan nephilid spider lineage Clitaetrinae (Araneae, Nephilidae) (2006) Zoolog. Scr., 35, pp. 19-62; Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G., Griswold, C.E., Scharff, N., Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea) (2017) Cladistics, 33, pp. 221-250; Kallal, R.J., Dimitrov, D., Arnedo, M.A., Giribet, G., Hormiga, G., Monophyly, taxon sampling, and the nature of ranks in the classification of orb-weaving spiders (Araneae: Araneoidea) (2020) Syst. Biol., 69, pp. 401-411. , PID: 31165170; Biswas, V., Raychaudhuri, D., Taxonomic account of the genus Nephila (Araneae: Nephilidae) of Bangladesh (2019) World Sci. News, 123, pp. 66-75; Kuntner, M., Coddington, J.A., Hormiga, G., Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies (2008) Cladistics, 24, pp. 147-217; Suana, I.W., Sunarpi, H., Sofian-Azirun, M., Hashim, R., Lim, P.E., Yong, H.S., Colour variation and polymorphism in the Giant orb-weaving spider Nephila vitiana (Araneae: Nephilidae) from Lombok, Indonesia (2011) J. Sci. Technol. Trop., 7, pp. 5-8; Yong, H.-S., Hashim, R., Belabut, D., Lim, P.E., (2010) Abdominal Colour Polymorphism in Female Asian Golden Web Spider Nephila Antipodiana, , Araneae, Nephilidae); Dahl, F., Seidenspinne und Spinnenseide (1912) Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin), 6, pp. 2-89; Pan, W.-J., Fang, H.-Y., Zhang, P., Pan, H.-C., The complete mitochondrial genome of Nephila clavata (Araneae: Nephilidae) Chinese population (2016) Mitochondrial DNA A, 27, pp. 994-995. , COI: 1:CAS:528:DC%2BC2MXitVajs7vM; Yang, W.-J., Xu, K.-K., Liu, Y., Yang, D.-X., Li, C., Complete mitochondrial genome and phylogenetic analysis of Argiope perforata (Araneae: Araneidae) (2019) Mitochondrial DNA B, 4, pp. 1963-1964; Yang, W.-J., Liu, Y., Xu, K.-K., Yang, D.-X., Li, C., Characterization of the complete mitochondrial genome of Cyclosajaponica (Araneae: Araneidae) (2019) Mitochondrial DNA B, 4, pp. 1877-1878; Wang, Z.-L., Li, C., Fang, W.-Y., Yu, X.-P., The complete mitochondrial genome of two Tetragnatha spiders (Araneae: Tetragnathidae): severe truncation of tRNAs and novel gene rearrangements in Araneae (2016) Int. J. Biol. Sci., 12, p. 109. , COI: 1:CAS:528:DC%2BC28XhsVKks7bF, PID: 26722222; Yang, D., Yan, X., Xu, K., Yang, W., Li, C., The complete mitochondrial genome of Epeus alboguttatus (Araneae: Salticidae) (2019) Mitochondrial DNA B, 4, pp. 316-317; Wang, Z.-L., Li, C., Fang, W.-Y., Yu, X.-P., The complete mitochondrial genome of the wolf spider Wadicosa fidelis (Araneae: Lycosidae) (2016) Mitochondrial DNA A, 27, pp. 3909-3910. , COI: 1:CAS:528:DC%2BC2sXlsVajur8%3D; Zhu, H.-F., Wang, Z.-Y., Wang, Z.-L., Yu, X.-P., Complete mitochodrial genome of the crab spider Ebrechtella tricuspidata (Araneae: Thomisidae): a novel tRNA rearrangement and phylogenetic implications for Araneae (2019) Genomics, 111, pp. 1266-1273. , COI: 1:CAS:528:DC%2BC1cXhs1WhtL3O, PID: 30145284; Kumar, V., Tyagi, K., Chakraborty, R., Prasad, P., Kundu, S., Tyagi, I., The Complete Mitochondrial Genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis (2020) Sci. Rep., 10, pp. 1-11. , COI: 1:CAS:528:DC%2BB3cXhtFejtrY%3D; Tyagi, K., Kumar, V., Poddar, N., Prasad, P., Tyagi, I., Kundu, S., The gene arrangement and phylogeny using mitochondrial genomes in spiders (Arachnida: Araneae) (2020) Int. J. Biol. Macromol., 146, pp. 488-496. , COI: 1:CAS:528:DC%2BB3cXhtF2ktr4%3D, PID: 31923488; Wang, Z.-L., Li, C., Fang, W.-Y., Yu, X.-P., The complete mitochondrial genome of orb-weaving spider Araneus ventricosus (Araneae: Araneidae) (2016) Mitochondrial DNA A, 27, pp. 1926-1927. , COI: 1:CAS:528:DC%2BC2sXltlylu7o%3D; Yan, Y., Xu, K.-K., Yang, D.-X., Li, C., Yang, W.-J., The complete mitochondrial genome of Argiope ocula (Araneae: Araneidae) and its phylogeny (2019) Mitochondrial DNA B, 4, pp. 3318-3319; Masta, S.E., Boore, J.L., The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs (2004) Mol. Biol. Evol., 21, pp. 893-902. , COI: 1:CAS:528:DC%2BD2cXjsFyqs74%3D, PID: 15014167; Liu, M., Zhang, Z., Peng, Z., The mitochondrial genome of the water spider Argyroneta aquatica (Araneae: Cybaeidae) (2015) Zoolog. Scr., 44, pp. 179-190; Pons, J., Bover, P., Bidegaray-Batista, L., Arnedo, M.A., Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders (2019) BMC Genomics, 20, p. 665. , PID: 31438844, COI: 1:CAS:528:DC%2BC1MXhs1Gksr7L; Xu, K., Lin, X., Yang, D., Yang, W., Li, C., Characterization of the complete mitochondrial genome sequence of Neoscona scylla and phylogenetic analysis (2019) Mitochondrial DNA B, 4, pp. 416-417; Yang, W.-J., Xu, K.-K., Yang, D.-X., Li, C., Characterization of complete mitochondrial genome of Evarcha coreana (Araneae: Salticidae) (2019) Mitochondrial DNA B, 4, pp. 1321-1322; Kim, J.Y., Park, Y.C., Complete mitogenome and phylogenetic position of Uroctea compactilis (Arachnida: Oecobiidae) (2019) Mitochondrial DNA B, 4, pp. 348-349; Oliveira, R.R.M., Vasconcelos, S., Pires, E.S., Pietrobon, T., Prous, X., Oliveira, G., Complete mitochondrial genomes of three troglophile cave spiders (Mesabolivar, pholcidae) (2019) Mitochondrial DNA B, 4, pp. 251-252; Wang, Z.-L., Li, C., Fang, W.-Y., Yu, X.-P., Characterization of the complete mitogenomes of two Neoscona spiders (Araneae: Araneidae) and its phylogenetic implications (2016) Gene, 590, pp. 298-306. , COI: 1:CAS:528:DC%2BC28XpsVGnsLY%3D, PID: 27259661; Ojala, D., Montoya, J., Attardi, G., tRNA punctuation model of RNA processing in human mitochondria (1981) Nature, 290, pp. 470-474. , COI: 1:CAS:528:DyaL3MXksFKmtLo%3D, PID: 7219536; Ashfaq, M., Blagoev, G., Tahir, H.M., Khan, A.M., Mukhtar, M.K., Akhtar, S., Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan (2019) PLoS ONE, 14. , COI: 1:CAS:528:DC%2BC1MXhtV2jtb7P, PID: 31116764; Astrin, J.J., Höfer, H., Spelda, J., Holstein, J., Bayer, S., Hendrich, L., Towards a DNA barcode reference database for spiders and harvestmen of Germany (2016) PLoS ONE, 11. , COI: 1:CAS:528:DC%2BC2sXhtlyqurbO; Masta, S.E., Boore, J.L., Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes (2008) Mol. Biol. Evol., 25, pp. 949-959. , COI: 1:CAS:528:DC%2BD1cXlvVKhu7w%3D, PID: 18296699; On the shoulder of giants: Mitogenome recovery from non‐targeted genome projects for phylogenetic inference and molecular evolution studies (2020) J. Zool. Syst. Evolut. Res.; Su, Y.-C., Chang, Y.-H., Smith, D., Zhu, M.-S., Kuntner, M., Tso, I.-M., Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia (2011) Zoolog. Sci., 28, pp. 47-55. , PID: 21186947; Kuntner, M., Arnedo, M.A., Trontelj, P., Lokovšek, T., Agnarsson, I., A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage (2013) Mol. Phylogenet. Evol., 69, pp. 961-979. , COI: 1:CAS:528:DC%2BC3sXhtFSmt77K, PID: 23811436; Dimitrov, D., Benjamin, S.P., Hormiga, G., A revised phylogenetic analysis for the spider genus Clitaetra Simon, 1889 (Araneae, Araneoidea, Nephilidae) with the first description of the male of the Sri Lankan species Clitaetra thisbe Simon, 1903 (2009) Bull. Museum Comp. Zool., 159, pp. 301-323; Cameron, S.L., Insect mitochondrial genomics: implications for evolution and phylogeny (2020) Annu. Rev. Entomol., 59, pp. 95-117. , COI: 1:CAS:528:DC%2BC2cXjtlSlsb4%3D; Yong, H.-S., Song, S.-L., Lim, P.-E., Eamsobhana, P., Suana, I.W., Complete mitochondrial genome of three Bactrocera fruit flies of subgenus Bactrocera (Diptera: Tephritidae) and their phylogenetic implications (2016) PLoS ONE, 11. , PID: 26840430, COI: 1:CAS:528:DC%2BC28XhtlOlsL7P; Yong, H.-S., Song, S.-L., Eamsobhana, P., Goh, S.-Y., Lim, P.-E., Chow, W.-L., Mitochondrial genome supports sibling species of Angiostrongylus costaricensis (Nematoda: Angiostrongylidae) (2015) PLoS ONE, 10. , PID: 26230642, COI: 1:CAS:528:DC%2BC2MXhsVCgtb7P; Andrewsfastqc, S., (2010) A Quality Control Tool for High Throughput Sequence Data, , Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; Dierckxsens, N., Mardulyn, P., Smits, G., NOVOPlasty: de novo assembly of organelle genomes from whole genome data (2017) Nucleic Acids Res., 45, p. e18. , PID: 28204566, COI: 1:CAS:528:DC%2BC1cXhslWhu78%3D; Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., MITOS: improved de novo metazoan mitochondrial genome annotation (2013) Mol. Phylogenet. Evol., 69, pp. 313-319. , PID: 22982435; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410. , COI: 1:CAS:528:DyaK3MXitVGmsA%3D%3D, PID: 2231712; Hung, J.-H., Weng, Z., Sequence alignment and homology search with BLAST and ClustalW (2016) Cold Spring Harbor Protocols; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms (2018) Mol. Biol. Evol., 35, pp. 1547-1549. , COI: 1:CAS:528:DC%2BC1MXis1Ontrc%3D, PID: 5967553; Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., DnaSP 6: DNA sequence polymorphism analysis of large data sets (2017) Mol. Biol. Evol., 34, pp. 3299-3302. , COI: 1:CAS:528:DC%2BC1cXhvFCmsr%2FP, PID: 29029172; Perna, N.T., Kocher, T.D., Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes (1995) J. Mol. Evol., 41, pp. 353-358. , COI: 1:CAS:528:DyaK2MXnslWnt7g%3D, PID: 7563121; Benson, G., Tandem repeats finder: a program to analyze DNA sequences (1999) Nucleic Acids Res., 27, pp. 573-580. , COI: 1:CAS:528:DyaK1MXhtVKmtrg%3D, PID: 9862982; Alikhan, N.-F., Petty, N.K., Zakour, N.L.B., Beatson, S.A., BLAST ring image generator (BRIG): simple prokaryote genome comparisons (2011) BMC Genomics, 12, p. 402. , COI: 1:CAS:528:DC%2BC3MXhtFKnu7rE, PID: 21824423; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability (2013) Mol. Biol. Evol., 30, pp. 772-780. , COI: 1:CAS:528:DC%2BC3sXksFWisLc%3D, PID: 23329690; Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X., PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies (2020) Mol. Ecol. Resour., 20, pp. 348-355. , PID: 31599058; Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S., ModelFinder: fast model selection for accurate phylogenetic estimates (2017) Nat. Methods, 14, pp. 587-589. , COI: 1:CAS:528:DC%2BC2sXntFKitbw%3D, PID: 28481363; Schwarz, G., Estimating the dimension of a model (1978) Ann. Stat., 6, pp. 461-464; Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies (2015) Mol. Biol. Evol., 32, pp. 268-274. , COI: 1:CAS:528:DC%2BC2MXivFGltrs%3D, PID: 25371430; Tanabe, A.S., Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data (2007) Mol. Ecol. Notes, 7, pp. 962-964. , COI: 1:CAS:528:DC%2BD1cXls12ltQ%3D%3D; Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755. , COI: 1:STN:280:DC%2BD3MvotV2isw%3D%3D, PID: 11524383; Rambaut, A., (2012) Tree Figure Drawing Tool, 1. , http://tree.bio.ed.ac.uk/software/figtree/, version, [computer program, Accessed, 9 October

Indexed by Scopus

Leave a Comment