Clove oil has the activity to inhibit middle, maturation and degradation phase of candida tropicalis biofilm formation

Hamzah H., Yudhawan I., Rasdianah N., Setyowati E., Nandini E., Pratiwi S.U.T.

Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur, 75124, Indonesia; Department of Pharmacy, Stikes Muhammadiyah Gombong, Jl. Yos Sudarso No. 461, Gombong, 54411, Indonesia; Pharmacy Study Program, Faculty of Health and Sports, Universitas Negeri Gorontalo, Gorontalo, 96128, Indonesia; Faculty of Health Science, Pharmacy Study Program, Universitas Muhammadiyah Kudus, Jawa Tengah, 59316, Indonesia; Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada; Sekip Utara, Yogyakarta, 55281, Indonesia


Abstract

Clove oil is one of the natural antibacterial ingredients that is easily obtained because of its abundant amounts in nature. Various researches have been conducted, but the antibiofilm activity against Candida tropicalis has never been done. This study evaluates the effectiveness of clove oil in inhibiting and degrading C. tropicalis JFM 1541 biofilm activity. The research was conducted using the microtiter broth method. The antibiofilm activity was determined as the minimum biofilm inhibitory concentration (MBIC50 ), the minimum value of biofilm eradication concentration (MBEC50 ). Antibiofilm mechanism was elucidated using scanning electron microscopy (SEM). Statistical analyzes were performed using ANOVA (p <0.05). Showed that clove oil could inhibit biofilm formation at the middle phase by 65% (65.21 ± 0.01) and at the maturation phase by 56% (56.11 ± 0.01). Clove oil with a concentration of 1% v/v has been shown to have activity in degrading 41% of C. tropicalis biofilms (41.87 ± 0.01). SEM shows that clove oil can cause damage in the extracellular polymeric matrix (EPS) of C. tropicalis biofilm. In conclusion, clove oil acts as a potential antibiofilm activity against C. tropicalis (compared to nystatin as control drugs) and further developed a new antibiofilm agent. © 2022 AMG Transcend Association.

Antibiofilm; Biofilm; Candida tropicalis; Clove oil; Scanning Electron Microscopy (SEM)


Journal

Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 2, Art No , Page 1507 – 1519, Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110464202&doi=10.33263%2fBRIAC122.15071519&partnerID=40&md5=440756cd9757c8156f98e57979c3d500

doi: 10.33263/BRIAC122.15071519

Issn: 20695837

Type:


References

Anderson, G.G., Palermo, J.J., Schilling, J.D., Roth, R., Heuser, J., Hultgren, S.J., Intracellular Bacterial Biofilm-Like Pods in Urinary Tract Infections (2003) Science, 301, pp. 105-107. , https://doi.org/10.1126/science.1084550; Cavalheiro, M., Teixeira, M.C., Candida Biofilms: Threats, Challenges, and Promising Strategies (2018) Front. Med, 5, p. 28. , https://doi.org/10.3389/fmed.2018.00028; Tseng, Y. K., Chen, Y. C., Hou, C. J., Deng, F. S., Liang, S. H., Hoo, S. Y., Hsu, C. C., Lin, C. H., Evaluation of biofilm formation in candida tropicalis using a silicone-based platform with synthetic urine medium (2020) Microorganisms, 8. , https://doi.org/10.3390/microorganisms8050660; Chen, M., Yu, Q., Sun, H., Novel Strategies for the Prevention and Treatment of Biofilm Related Infections (2013) Int. J. Mol. Sci, 14, pp. 18488-18501. , https://doi.org/10.3390/ijms140918488; Pratiwi, S.U.T., Lagendijk, E.L., Hertiani, T., Weert, S.D., Hondel, C.A.M.J.J., Antimicrobial Effects of Indonesian Medicinal Plants Extracts on Planktonic and Biofilm Growth of Pseudomonas aeruginosa and Staphylococcus aureus. l (2015) J Horticulture, 2, p. 1; Tyfa, A., Laskowski, D., Kunicka-styczy, A., Alicyclobacillus acidoterrestris Biofilm on (2020) Molecules, 25 (3334), pp. 1-11. , https://doi.org/doi:10.3390/molecules25153334; Donlan, R.M., Biofilms: Microbial Life on Surfaces (2002) Emerg. Infect. Dis, 8, pp. 881-890. , https://doi.org/10.3201/eid0809.020063; Harriott, M.M., Noverr, M.C., Importance of Candida–Bacterial Polymicrobial Biofilms in Disease (2011) Trends Microbiol, 19, pp. 557-563. , https://doi.org/10.1016/j.tim.2011.07.004; Talapko, J., Škrlec, I., The principles, mechanisms, and benefits of unconventional agents in the treatment of biofilm infection (2020) Pharmaceuticals, 13, pp. 1-13. , https://doi.org/10.3390/ph13100299; Aires, A., Barreto, A. S., Semedo-Lemsaddek, T., Antimicrobial effects of essential oils on oral microbiota biofilms: The toothbrush in vitro model (2021) Antibiotics, 10, pp. 1-16. , https://doi.org/10.3390/antibiotics10010021; Lone, S. A., Ahmad, A., Inhibitory effect of novel Eugenol Tosylate Congeners on pathogenicity of Candida albicans (2020) BMC Complementary Medicine and Therapies, 20, pp. 1-14. , https://doi.org/10.1186/s12906-020-02929-0; Chai, L.Y.A., Denning, D.W., Warn, P., Candida tropicalis in Human Disease (2010) Crit. Rev. Microbiol, 36, pp. 282-298. , https://doi.org/10.3109/1040841X.2010.489506; Lemos, A. S. O., Florêncio, J. R., Pinto, N. C. C., Campos, L. M., Silva, T. P., Grazul, R. M., Pinto, P. F., Fabri, R. L., Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain (2020) Frontiers in Microbiology, 11, pp. 1-11. , https://doi.org/10.3389/fmicb.2020.01525; Prasath, K. G., Tharani, H., Kumar, M. S., Pandian, S. K., Palmitic Acid Inhibits the Virulence Factors of Candida tropicalis: Biofilms, Cell Surface Hydrophobicity, Ergosterol Biosynthesis, and Enzymatic Activity (2020) Frontiers in Microbiology, 11, pp. 1-21. , https://doi.org/10.3389/fmicb.2020.00864; Ramage, G., Martínez, J.P., LÃ3pez-Ribot, J.L., Candida Biofilms on Implanted Biomaterials: A Clinically Significant Problem (2006) FEMS Yeast Res, 6, pp. 979-986. , https://doi.org/10.1111/j.1567-1364.2006.00117.x; Kıvanç, M., Er, S., Biofilm formation of candida spp. Isolated from the vagina and antibiofilm activities of lactic acid bacteria on the these candida isolates (2020) African Health Sciences, 20, pp. 641-648. , https://doi.org/10.4314/ahs.v20i2.12; Kit, A., Chan, Y., Aspirin as an Antifungal-Lock Agent in Inhibition of Candidal Biofilm Formation in Surgical Catheters (2021) Infection and Drug Resistance, 2021, pp. 1427-1433. , https://doi.org/10.2147/IDR.S308262; Tekintaş, Y., Temel, A., Ateş, A., Eraç, B., Metin, D. Y., Hilmioğlu Polat, S., Hoşgör Limoncu, M., Antifungal and antibiofilm activities of selective serotonin reuptake inhibitors alone and in combination with fluconazole (2020) Turkish Journal of Pharmaceutical Sciences, 17, pp. 667-672. , https://doi.org/10.4274/tjps.galenos.2019.65481; Nurwijayanto, M., Wahyuono, S., Syahbudin, A., Screening of Antioxidants Properties from Understory Plants of Gunung Merapi National Park (Yogyakarta, Indonesia): Potential Use for Alternative Medicine (2019) Ecol. Environ. Conserv, 25, pp. 1030-1034. , https://www.researchgate.net/publication/337159663_ICINE; Rajkowska, Katarzyna, Nowicka-Krawczyk, Paulina, Kunicka-Styczynska, Alina, Cells, Y., Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells (2019) Molecules, pp. 1-12. , https://doi.org/10.3390/molecules24101954; Blank, G., Al-Khayat, M., Ismond, M.A.H., Germination and Heat Resistance of Bacillus subfilis Spores Produced on Clove and Eugenol Based Media (1987) Food Microbiol, 4, pp. 35-42. , https://doi.org/10.1016/0740-0020(87)90016-5; Hoque, M., Bari, M.L., Juneja, V.K., Kawamoto, S., Antimicrobial Activity of Cloves and Cinnamon Extracts Against Food Borne Pathogens and Spoilage Bacteria, and Inactivation of Listeria Monocytogenes in Ground Chicken Meat with Their Essential Oils (2008) Rep Nat’l Food Res Inst, 72, pp. 9-21. , https://agris.fao.org/agris-search/search.do?recordID=JP2008003797; Sulieman, A.M.E., El Boshra, I.M.O., El Khalifa, E.A.A., Nutritive Value of Clove (Syzygium aromaticum) and Detection of Antimicrobial Effect of Its Bud Oil (2007) Res. J. Microbiol, 2, pp. 266-271. , https://www.researchgate.net/publication/282855327_Nutritive_Value_of_Clove_Syzygium_aromaticum_and_Detection_of_Antimicrobial_Effect_of_its_Bud_Oil; Kramer, R.E., Antioxidants in Clove (1985) J. Am. Oil Chem. Soc, 62, pp. 111-113. , https://doi.org/10.1007/BF02541505; Lee, K.-G., Shibamoto, T., Antioxidant Property of Aroma Extract Isolated from Clove Buds [Syzygium aromaticum (l.) Merr. Et Perry] (2001) Food Chem, 74, pp. 443-448. , https://doi.org/10.1016/S0308-8146(01)00161-3; Batiha, G. E. S., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H., Rashwan, E. K., Syzygium aromaticum l. (myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities (2020) Biomolecules, 10. , https://doi.org/10.3390/biom10020202; Husain, F. M., Ahmad, I., Asif, M., Tahseen, Q., Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila (2013) Journal of Biosciences, 38, pp. 835-844. , https://doi.org/10.1007/s12038-013-9385-9; da Costa, J. S., Barroso, A. S., Mourão, R. H. V., da Silva, J. K. R., Maia, J. G. S., Figueiredo, P. L. B., Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L., curzerene-rich, thermally produced in situ (2020) Biomolecules, 10. , https://doi.org/10.3390/biom10020328; Alma, M.H., Ertas, M., Nitz, S., Kollmannsberger, H., Chemical Composition and Content of Essential Oil (2007) Bioresources, 2, pp. 265-269. , https://www.researchgate.net/publication/26460126_Chemical_composition_and_content_of_essential_oil_from_the_bud_of_cultivated_Turkish_clove_Syzygium_aromaticum_L; Alma, M.H., Ertas, M., Nitz, S., Kollmannsberger, H., Chemical Composition and Content of Essential Oil (2007) Bioresources, 2, pp. 265-269. , https://www.researchgate.net/publication/26460126_Chemical_composition_and_content_of_essential_oil_from_the_bud_of_cultivated_Turkish_clove_Syzygium_aromaticum_L; Amelia, B., Saepudin, E., Cahyana, A.H., Rahayu, D.U., Sulistyoningrum, A.S., Haib, J., GC-MS Analysis of Clove (Syzygium aromaticum) Bud Essential Oil from Java and Manado (2017) AIP Conference Proceedings, , https://doi.org/10.1063/1.4991186; Nurdjannah, N., Bermawie, N., Cloves. In. Handbook of Herbs and Spices (2012), pp. 197-215. , https://doi.org/10.1533/9780857095671.197, Woodhead Publishing Limited; Walsh, S.E., Maillard, J.-Y., Russell, A.D., Catrenich, C.E., Charbonneau, D.L., Bartolo, R.G., Activity and Mechanisms of Action of Selected Biocidal Agents on Gram-Positive and-Negative Bacteria (2003) J. Appl. Microbiol, 94, pp. 240-247. , https://doi.org/10.1046/j.1365-2672.2003.01825.x; Filgueiras, C.T., Vanetti, M.C.D., Effect of Eugenol on Growth and Listeriolysin O Production by Listeria monocytogenes (2006) Braz. Arch. Biol. Technol, 49, pp. 405-409. , https://doi.org/10.1590/S1516-89132006000400008; Devi, K.P., Nisha, S.A., Sakthivel, R., Pandian, S.K., Eugenol (an Essential Oil of Clove) Acts as an Antibacterial Agent Against Salmonella typhi by Disrupting the Cellular Membrane (2010) J. Ethnopharmacol, 130, pp. 107-115. , https://doi.org/10.1016/j.jep.2010.04.025; Jafri, H., Banerjee, G., Khan, M. S. A., Ahmad, I., Abulreesh, H. H., Althubiani, A. S., Synergistic interaction of eugenol and antimicrobial drugs in eradication of single and mixed biofilms of Candida albicans and Streptococcus mutans (2020) AMB Express, 10. , https://doi.org/10.1186/s13568-020-01123-2; Ahmad, A., Khan, A., Manzoor, N., Khan, L.A., Evolution of Ergosterol Biosynthesis Inhibitors as Fungicidal Against Candida (2010) Microb. Pathog, 48, pp. 35-41. , https://doi.org/10.1016/j.micpath.2009.10.001; Chami, N., Bennis, S., Chami, F., Aboussekhra, A., Remmal, A., Study of Anticandidal Activity of Carvacrol and Eugenol In Vitro and In Vivo (2005) Oral Microbiol. Immunol, 20, pp. 106-111. , https://doi.org/10.1111/j.1399-302X.2004.00202.x; Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A., Manzoor, N., Induction of Oxidative Stress as a Possible Mechanism of the Antifungal Action of Three Phenylpropanoids: Antifungal Activity of Phenylpropanoids (2011) FEMS Yeast Res, 11, pp. 114-122. , https://doi.org/10.1111/j.1567-1364.2010.00697.x; Baygar; Tuba, Sarac, N., Ugur, A., Baygar, Tacnur, Balci, U., The Inhibition Effects of Eugenol and Pulegone on Stenotrophomonas maltophilia: An Opportunistic Pathogen (2019) Erciyes Üniversitesi Vet. Fakültesi Derg, 16, pp. 23-29. , https://doi.org/10.32707/ercivet.538021; Zhang, Y., Wang, Y., Zhu, X., Cao, P., Wei, S., Lu, Y., Antibacterial and Antibiofilm Activities of Eugenol from Essential Oil of Syzygium aromaticum (l.) Merr. & L. M. Perry (clove) Leaf Against Periodontal Pathogen Porphyromonas gingivalis (2017) Microb. Pathog, 113, pp. 396-402. , https://doi.org/10.1016/j.micpath.2017.10.054; da Costa, J. S., da Cruz, E., de, N. S., Setzer, W. N., da Silva, J. K. D. R., Maia, J. G. S., Figueiredo, P. L. B., Essentials oils from Brazilian eugenia and syzygium species and their biological activities (2020) Biomolecules, 10, pp. 1-36. , https://doi.org/10.3390/biom10081155; Alexander, Barbara D., (2017) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, , https://clsi.org/standards/products/microbiology/documents/m27, M.D.; MHS. CLSI. 4th. Edition. Clinical and Laboratory Standard Institute; Pierce, C.G., Uppuluri, P., Tummala, S., Lopez-Ribot, J.L., A 96 well microtiter plate-based method for monitoring formation and antifungal susceptibility testing of Candida albicans biofilms (2010) J. Vis. Exp. JoVE, , https://doi.org/10.3791/2287; Hamzah, H., Tunjung Pratiwi, S.U., Hertiani, T., Efficacy of Thymol and Eugenol Against Polymicrobial Biofilm (2018) Indones. J. Pharm, 29, pp. 214-221. , https://doi.org/10.14499/indonesianjpharm29iss4pp214; Nuryastuti, T., Setiawati, S., Ngatidjan, N., Mustofa, M., Jumina, J., Fitriastuti, D., Mardjan, M.I.D., Antibiofilm activity of (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide against Candida albicans (2018) J. Mycol. Médicale, 28, pp. 367-373. , https://doi.org/10.1016/j.mycmed.2017.12.010; Pratiwi, S.U.T., Hertiani, T., Efficacy of Massoia Oil in Combination with Some Indonesian Medicinal Plants Oils as Anti-Biofilm Agent Towards Candida albicans (2017) Int. J. Pharm. Sci. Res, 8, pp. 2013-2025. , https://doi.org/10.13040/IJPSR.0975-8232.8(5).2013-25; Ali, I., Khan, F.G., Suri, K.A., Gupta, B.D., Satti, N.K., Dutt, P., Afrin, F., Khan, I.A., In vitro antifungal activity of hydroxychavicol isolated from Piper betle L (2010) Ann. Clin. Microbiol. Antimicrob, 9, p. 7. , https://doi.org/10.1186/1476-0711-9-7; Pratiwi, S.U.T., Hertiani, T., Efficacy of Massoia Oil in Combination with Some Indonesian Medicinal Plants Oils as Anti-Biofilm Agent Towards Candida Albicans (2017) Int. J. Pharm. Sci. Res, 8, p. 13. , https://ijpsr.com/bft-article/efficacy-of-massoia-oil-in-combination-with-some-indonesian-medicinal-plants-oils-as-anti-biofilm-agent-towards-candida-albicans/?view=fulltext; Hess, D.J., Henry-Stanley, M.J., Barnes, A.M.T., Dunny, G.M., Wells, C.L., Ultrastructure of a Novel Bacterial Form Located in Staphylococcus aureus In Vitro and In Vivo Catheter-Associated Biofilms (2012) J. Histochem. Cytochem, 60, pp. 770-776. , https://doi.org/10.1369/002215541245757; Hess, D.J., Henry-Stanley, M.J., Barnes, A.M.T., Dunny, G.M., Wells, C.L., Ultrastructure of a Novel Bacterial Form Located in Staphylococcus aureus In Vitro and In Vivo Catheter-Associated Biofilms (2012) J. Histochem. Cytochem, 60, pp. 770-776. , https://doi.org/10.1369/002215541245757; Al-Fattani, M.A., Douglas, L.J., Biofilm Matrix of Candida albicans and Candida tropicalis: Chemical Composition and Role in Drug Resistance (2006) J. Med. Microbiol, 55, pp. 999-1008. , https://doi.org/10.1099/jmm.0.46569-0; Olszewska, M.A., Gedas, A., Simoes, M., The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia coli Biofilm Control as Assessed by Culture-Dependent and-Independent Methods (2020) Molecules, 25 (2641), pp. 1-14. , https://doi.org/10.3390/molecules25112641; El-Baz, A. M., Mosbah, R. A., Goda, R. M., Mansour, B., Sultana, T., Dahms, T. E. S., El-Ganiny, A. M., Back to nature: Combating candida albicans biofilm, phospholipase and hemolysin using plant essential oils (2021) Antibiotics, 10, pp. 1-18. , https://doi.org/10.3390/antibiotics10010081; Hamzah, H., Hertiani, T., Utami Tunjung Pratiwi, S., Nuryastuti, T., The Inhibition Activity of Tannin on the Formation of Mono-Species and Polymicrobial Biofilm Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans (2019) Maj. Obat Tradis, 24, pp. 110-118. , https://doi.org/10.22146/mot.44532; Harriott, M.M., Noverr, M.C., Ability of Candida Albicans Mutants to Induce Staphylococcus aureus Vancomycin Resistance During Polymicrobial Biofilm Formation (2010) Antimicrob. Agents Chemother, 54, pp. 3746-3755. , https://doi.org/10.1128/AAC.00573-10; de Aguiar, F. L. L., Santos, N. C., Cavalcante, C. S., de, P., Andreu, D., Baptista, G. R., Gonçalves, S., Antibiofilm activity on candida albicans and mechanism of action on biomembrane models of the antimicrobial peptide Ctn[15–34] (2020) International Journal of Molecular Sciences, 21, pp. 1-15. , https://doi.org/10.3390/ijms21218339; Sharma, S., Barkauskaite, S., Duffy, B., Jaiswal, A. K., Jaiswal, S., Characterization and Antimicrobial Activity of Biodegradable Active Packaging Enriched with clove and thyme essential oil for food packaging application (2020) Foods, 9, p. 16. , https://doi.org/10.3390/foods9081117; Alexa, V. T., Szuhanek, C., Cozma, A., Galuscan, A., Clove Essential Oils and Their Chemical Compounds (2020) Molecules, 25 (23), p. 5502. , https://doi.org/10.3390/molecules25235502; de Aguiar, F. L. L., Santos, N. C., Cavalcante, C. S., de, P., Andreu, D., Baptista, G. R., Gonçalves, S., Antibiofilm activity on candida albicans and mechanism of action on biomembrane models of the antimicrobial peptide Ctn[15–34] (2020) International Journal of Molecular Sciences, 21, pp. 1-15. , https://doi.org/10.3390/ijms21218339; Yadav, M.K., Chae, S.-W., Im, G.J., Chung, J.-W., Song, J.-J., Eugenol: A Phyto-Compound Effective Against Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Strain Biofilms (2015) PLOS ONE, 10, p. e0119564. , https://doi.org/10.1371/journal.pone.0119564; Zhang, Y., Wang, Y., Zhu, X., Cao, P., Wei, S., Lu, Y., Antibacterial and Antibiofilm Activities of Eugenol from Essential Oil of Syzygium aromaticum (l.) Merr. & L. M. Perry (clove) Leaf Against Periodontal Pathogen Porphyromonas gingivalis (2017) Microb. Pathog, 113, pp. 396-402. , https://doi.org/10.1016/j.micpath.2017.10.054; Nakamura, C.V., Ishida, K., Faccin, L.C., Filho, B.P.D., Cortez, D.A.G., Rozental, S., de Souza, W., Ueda-Nakamura, T., In Vitro Activity of Essential Oil from Ocimum Gratissimum L. Against Four Candida Species (2004) Res. Microbiol, 155, pp. 579-586. , https://doi.org/10.1016/j.resmic.2004.04.004; Prakash, B., Veeregowda, B.M., Krishnappa, G., Biofilm: A Survival Strategy of Bacteria (2003) Curr. Sci, 85, pp. 1299-1307. , https://www.jstor.org/stable/24108133?seq=1

Indexed by Scopus

Leave a Comment