Chemical compounds and pharmacological activities of cucumis genus

Insanu M., Rizaldy D., Silviani V., Fidrianny I.

Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia


Abstract

Cucumis genus is one of the genera from the Cucurbitaceae family. Cucumis genus plants have many health benefits. They are known as traditional medicinal plants in several countries in Asia, including Indonesia. This literature review discusses the topic of traditional use, phytochemical compounds, nutritional content, pharmacological activity, genotoxicology, and toxicity tests of the Cucumis genus plants based on data obtained from scientific databases and search engines such as PubMed, Scopus, Science Direct, and Google Scholar. Cucumis genus plants contain many chemical compounds, such as cucurbitacin, phenolic compounds, vitamins, minerals, essential oils, and fatty acids. Several studies have shown that Cucumis genus plants exhibited some pharmacological activities such as antimicrobial, analgesic, antioxidant, anti-inflammatory, antidiabetic, antiwrinkle, and anticancer activity. Cucumis genus plants also have useful therapeutic effects for osteoarthritis, ulcerative colitis, and wound healing. Each part of Cucumis genus plants contains phytochemical compounds that are different from one another. Their pharmacological activities are also different, depending on the phytochemical compounds and Cucumis genus plants’ plant parts. However, more recent studies are needed regarding the genotoxicology and toxicity of the Cucumis genus plants. © 2021 by the authors.

Chemical compounds; Cucumis genus; Pharmacological activities


Journal

Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 1, Art No , Page 1324 – 1334, Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105341120&doi=10.33263%2fBRIAC121.13241334&partnerID=40&md5=5ace08aea2a3c36a171c210a980f38e5

doi: 10.33263/BRIAC121.13241334

Issn: 20695837

Type: All Open Access, Bronze


References

Ozuna, C., León-Galván, M.F., Cucurbitaceae seed protein hydrolysates as a potential source of bioactive peptides with functional properties (2017) Biomed Res Int, 2017, p. 2121878. , https://doi.org/10.1155/2017/2121878; Kim, M.Y., Kim, E.J., Kim, Y.N., Choi, C., Lee, B.H., Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts (2012) Nutr Res Pract, 6, pp. 21-27. , http://doi.org/10.4162/nrp.2012.6.1.21; Mukherjee, P.K., Maity, N., Nema, N.K., Sarkar, B.K., Bioactive compounds from natural resources against skin aging (2011) Phytomedicine, 19, pp. 64-73. , https://doi.org/10.1016/j.phymed.2011.10.003; Sebastian, P., Schaefer, H., Telford, I.R., Renner, S.S., Cucumber (Cucumis sativus) and melon (Cucumis melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia (2010) Proc Natl Acad Sci USA, 107, pp. 14269-14273. , https://doi.org/10.1073/pnas.1005338107; Ramezani, M., Rahmani, F., Dehestani, A., Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on the antibacterial property of Cucumis sativus (2017) BMC Compl Alternative Med, 17, pp. 1-6. , https://doi.org/10.1186/s12906-017-1808-y; Waziri, M., Saleh, I.A., Proximate analysis and phytochemical screening of Psidium guajava (Guava) and Cucumis sativus (Cucumber) grown in Gashua Fadama area of Yobe state, Nigeria (2015) Int Res J Pure Appl Chem, pp. 77-83. , https://doi.org/10.9734/IRJPAC/2015/13775; Rajasree, R.S., Sibi, P.I., Francis, F., William, H., Phytochemicals of Cucurbitaceae family (2016) Int J Pharmacogn Phytochem Res, 8, pp. 113-123; Tuama, A.A., Mohammed, A.A., Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus (2019) Saudi J Biol Sci, 26, pp. 600-604. , https://doi.org/10.1016/j.sjbs.2018.07.012; Patel, S., Rauf, A., Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns (2017) Biomed Pharmacother, 91, pp. 330-337. , https://doi.org/10.1016/j.biopha.2017.04.090; Yuan, R.Q., Qian, L., Yun, W.J., Cui, X.H., Lv, G.X., Tang, W.Q., Cao, R.C., Xu, H., Cucurbitacins extracted from Cucumis melo L. (CuEC) exert a hypotensive effect via regulating vascular tone (2019) Hypertension, 42, pp. 1152-1161. , https://doi.org/10.1038/s41440-019-0258-y; Ezekaibeya, A.C., Nnenna, A.O., Kenechukwu, O.C., Proximate, phytochemical and vitamin compositions of Cucumis metuliferus (horned melon) rind (2020) J Complement Altern Med Res, pp. 40-50; Barber, N.A., Arbuscular mycorrhizal fungi are necessary for the induced response to herbivores by Cucumis sativus (2013) J Plant Ecol, 6, pp. 171-176. , https://doi.org/10.1093/jpe/rts026; Kaushik, U., Aeri, V., Mir, S.R., Cucurbitacins–an insight into medicinal leads from nature (2015) Pharmacogn Rev, 9, p. 12. , https://doi.org/10.4103/0973-7847.156314; Shang, Y., Ma, Y., Zhou, Y., Zhang, H., Duan, L., Chen, H., Zeng, J., Liu, M., Biosynthesis, regulation, and domestication of bitterness in cucumber (2014) Science, 346, pp. 1084-1088. , https://doi.org/10.1126/science.1259215; Luo, F., Li, Q., Yu, L., Wang, C., Qi, H., High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt (2020) Plant Physiol Biochem, 154, pp. 770-781. , https://doi.org/10.1016/j.plaphy.2020.05.033; Dong, Y., Lu, B., Zhang, X., Zhang, J., Lai, L., Li, D., Wu, Y., Yi, Z., Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2–STAT3 signaling pathway (2010) Carcinogenesis, 31, pp. 2097-2104. , https://doi.org/10.1093/carcin/bgq167; Ge, W., Chen, X., Han, F., Liu, Z., Wang, T., Wang, M., Chen, Y., Zhang, Q., Synthesis of Cucurbitacin B Derivatives as Potential Anti-Hepatocellular Carcinoma Agents (2018) Molecules, 23, p. 3345. , https://doi.org/10.3390/molecules23123345; Xu, X., Tang, L., Shan, H.F., Wang, Z.Q., Shan, W.G., Study on extraction of Cucurbitacin B from the pedicel of Cucumis melo L. by acid hydrolysis (2013) Adv Mat Res, 704, pp. 61-65. , https://doi.org/10.4028/www.scientific.net/AMR.704.61; Cai, Y., Fang, X., He, C., Li, P., Xiao, F., Wang, Y., Chen, M., Cucurbitacins: A systematic review of the phytochemistry and anticancer activity (2015) Am J Chin Med, 43, pp. 1331-1350. , https://doi.org/10.1142/S0192415X15500755; Haminiuk, C.W., Maciel, G.M., Plata‐Oviedo, M.S., Peralta, R.M., Phenolic compounds in fruits–an overview (2012) Int J Food Sci Tech, 47, pp. 2023-2044. , https://doi.org/10.1111/j.1365-2621.2012.03067.x; Abu-Reidah, I.M., Arráez-Román, D., Quirantes-Piné, R., Fernández-Arroyo, S., Segura-Carretero, A., Fernández-Gutiérrez, A., HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract (2012) Food Res Int, 46, pp. 108-117. , https://doi.org/10.1016/j.foodres.2011.11.026; Silva, M.A., Albuquerque, T.G., Alves, R.C., Oliveira, M.B., Costa, H.S., Melon (Cucumis melo L.) byproducts: Potential food ingredients for novel functional foods? (2020) Trends Food Sci Technol, 98, pp. 181-189. , https://doi.org/10.1016/j.tifs.2018.07.005; Ismail, H.I., Chan, K.W., Mariod, A.A., Ismail, M., Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts (2010) Food Chem, 119, pp. 643-647. , https://doi.org/10.1016/j.foodchem.2009.07.023; Mallek-Ayadi, S., Bahloul, N., Kechaou, N., Characterization, phenolic compounds and functional properties of Cucumis melo L. peels (2017) Food Chem, 221, pp. 1691-1697. , https://doi.org/10.1016/j.foodchem.2016.10.117; Vella, F.M., Cautela, D., Laratta, B., Characterization of polyphenolic compounds in cantaloupe melon byproducts (2019) Foods, 8, p. 196. , https://doi.org/10.3390/foods8060196; Ganji, S.M., Singh, H., Friedman, M., Phenolic content and antioxidant activity of extracts of 12 melon (Cucumis melo) peel powders prepared from commercial melons (2019) J Food Sci, 84, pp. 1943-1948. , https://doi.org/10.1111/1750-3841.14666; Essien, A.D., Comparative studies of the phytochemistry, proximate analysis, mineral and vitamin compositions of the methanol leaf extracts of Cucumis sativus L. and Daucus carota L (2016) IJPR, 6, p. 282; Kumar, D., Kumar, S., Singh, J., Vashistha, B.D., Singh, N., Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract (2010) J Young Pharm, 2, pp. 365-368. , https://doi.org/10.4103/0975-1483.71627; Hashem, A., Alqarawi, A.A., Radhakrishnan, R., Al-Arjani, A.B., Aldehaish, H.A., Egamberdieva, D., Abd-Allah, E.F., Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L (2018) Saudi J Biol Sci, 25, pp. 1102-1114. , https://doi.org/10.1016/j.sjbs.2018.03.009; Mallek-Ayadi, S., Bahloul, N., Kechaou, N., Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils (2018) Process Saf Environ Prot, 113, pp. 68-77. , https://doi.org/10.1016/j.psep.2017.09.016; Solval, K.M., Sundararajan, S., Alfaro, L., Sathivel, S., Development of cantaloupe (Cucumis melo) juice powders using spray drying technology (2012) LWT – Food Sci Technol, 46, pp. 287-293. , https://doi.org/10.1016/j.lwt.2011.09.017; Falodun, E.J., Ogedegbe, S.A., Performance and quality of muskmelon (Cucumis melo L.) as influenced by crop spacing and rates of swine manure application (2019) Not Sci Biol, 11, pp. 291-297. , https://doi.org/10.15835/nsb11210431; Gómez-García, R., Campos, D.A., Aguilar, C.N., Madureira, A.R., Pintado, M., Valorization of melon fruit (Cucumis melo L.) by-products: phytochemical and biofunctional properties with emphasis on recent trends and advances (2020) Trends Food Sci Technol, 99, pp. 507-519. , https://doi.org/10.1016/j.tifs.2020.03.033; Rashid, U., Rehman, H.A., Hussain, I., Ibrahim, M., Haider, M.S., Muskmelon (Cucumis melo) seed oil: A potential non-food oil source for biodiesel production (2011) Energy, 36, pp. 5632-5639. , https://doi.org/10.1016/j.energy.2011.07.004; Sotiroudis, G., Melliou, E., Sotiroudis, T.G., Chinou, I., Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars (2010) J Food Biochem, 34, pp. 61-78. , https://doi.org/10.1111/j.1745-4514.2009.00296.x; Tang, J., Meng, X., Liu, H., Zhao, J., Zhou, L., Qiu, M., Zhang, X., Yang, F., Antimicrobial activity of sphingolipids isolated from the stems of cucumber (Cucumis sativus L.) (2010) Molecules, 15, pp. 9288-9297. , https://doi.org/10.3390/molecules15129288; Al Akeel, R., Mateen, A., Alharbi, K.K., Alyousef, A.A., Al-Mandeel, H.M., Syed, R., Purification and MIC analysis of antimicrobial proteins from Cucumis sativus L. seeds (2018) BMC Complement Altern Med, 18, pp. 1-6. , https://doi.org/10.1186/s12906-018-2176-y; Netai, M.M., Stephen, N., Musekiwa, C., Synthesis of silver nanoparticles using wild Cucumis anguria: Characterization and antibacterial activity (2017) Afr J Biotechnol, 16, pp. 1911-1921. , https://doi.org/10.5897/AJB2017.16076; Ibrahim, S., Al Haidari, R., Mohamed, G., Elkhayat, E., Moustafa, M., Cucumol A: A cytotoxic triterpenoid from Cucumis melo seeds (2016) Rev Bras Farmacogn, 26, pp. 701-704. , http://doi.org/10.1016/j.bjp.2016.03.012; Ibrahim, S.R., Mohamed, G.A., Cucumin S, a new phenylethyl chromone from Cucumis melo var. reticulatus seeds (2015) Rev Bras Farmacogn, 25, pp. 462-464. , https://doi.org/10.1016/j.bjp.2015.06.006; Vishwakarma, V.K., Gupta, J.K., Upadhyay, P.K., Pharmacological importance of Cucumis melo L.: An overview (2017) Asian J Pharm Clin Res, 10, p. 8. , http://dx.doi.org/10.22159/ajpcr.2017.v10i3.13849; Nema, N.K., Maity, N., Sarkar, B., Mukherjee, P.K., Cucumis sativus fruitpotential antioxidant, anti-hyaluronidase, and anti-elastase agent (2011) Arch Dermatol Res, 303, pp. 247-252. , https://doi.org/10.1007/s00403-010-1103-y; Morais, D.R., Rotta, E.M., Sargi, S.C., Schmidt, E.M., Bonafe, E.G., Eberlin, M.N., Sawaya, A.C., Visentainer, J.V., Antioxidant activity, phenolics and UPLC–ESI (–)–MS of extracts from different tropical fruits parts and processed peels (2015) Food Res Int, 77, pp. 392-399. , https://doi.org/10.1016/j.foodres.2015.08.036; Bonesi, M., Saab, A.M., Tenuta, M.C., Leporini, M., Saab, M.J., Loizzo, M.R., Tundis, R., Screening of traditional Lebanese medicinal plants as antioxidants and inhibitors of key enzymes linked to type 2 diabetes (2020) Plant Biosyst, 154, pp. 656-662. , https://doi.org/10.1080/11263504.2019.1674400; Hashemi, Z., Ebrahimzadeh, M.A., Khalili, M., Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran (2019) Trop J Pharm Res, 18, pp. 1443-1448. , http://dx.doi.org/10.4314/tjpr.v18i7.11; Nasrin, F., Bulbul, I.J., Aktar, F., Rashid, M.A., Anti-inflammatory and antioxidant activities of Cucumis sativus leaves (2015) Bangladesh Pharm J, 18, pp. 169-173. , https://doi.org/10.3329/bpj.v18i2.24317; Bernardini, C., Zannoni, A., Bertocchi, M., Tubon, I., Fernandez, M., Forni, M., Water/ethanol extract of Cucumis sativus L. fruit attenuates lipopolysaccharide-induced inflammatory response in endothelial cells (2018) BMC Complement Altern Med, 18, p. 194. , https://doi.org/10.1186/s12906-018-2254-1; Trejo-Moreno, C., Méndez-Martínez, M., Zamilpa, A., Jiménez-Ferrer, E., Perez-Garcia, M.D., Medina-Campos, O.N., Pedraza-Chaverri, J., Cervantes-Torres, J., Cucumis sativus aqueous fraction inhibits angiotensin II-induced inflammation and oxidative stress in vitro (2018) Nutrients, 10, p. 276. , https://doi.org/10.3390/nu10030276; Nash, R.J., Bartholomew, B., Penkova, Y.B., Rotondo, D., Yamasaka, F., Stafford, G.P., Jenkinson, S.F., Fleet, G.W., Iminosugar idoBR1 isolated from Cucumber Cucumis sativus reduces inflammatory activity (2020) ACS Omega, 5, pp. 16263-16271. , https://doi.org/10.1021/acsomega.0c02092; Ezzat, S.M., Raslan, M., Salama, M.M., Menze, E.T., El Hawary, S.S., In vivo anti-inflammatory activity and UPLC-MS/MS profiling of the peels and pulps of Cucumis melo var. cantalupensis and Cucumis melo var. reticulatus (2019) J Ethnopharmacol, 237, pp. 245-254. , https://doi.org/10.1016/j.jep.2019.03.015; Alsayari, A., Kopel, L., Ahmed, M.S., Soliman, H.S., Annadurai, S., Halaweish, F.T., Isolation of anticancer constituents from Cucumis prophetarum var. prophetarum through bioassay-guided fractionation (2018) BMC Complement Altern Med, 18, p. 274. , https://doi.org/10.1186/s12906-018-2295-5; Dixit, Y., Kar, A., Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice (2010) Plant Foods Hum Nutr, 65, pp. 284-289. , https://doi.org/10.1007/s11130-010-0175-3; Salahuddin, M.D., Jalalpure, S.S., Antidiabetic activity of aqueous fruit extract of Cucumis trigonus Roxb. in streptozotocin-induced-diabetic rats (2010) J Ethnopharmacol, 127, pp. 565-567. , https://doi.org/10.1016/j.jep.2009.10.018; Demsie, D.G., Yimer, E.M., Berhe, A.H., Altaye, B.M., Berhe, D.F., Anti-nociceptive and anti-inflammatory activities of crude root extract and solvent fractions of Cucumis ficifolius in mice model (2019) J Pain Res, 12, p. 1399. , https://dx.doi.org/10.2147%2FJPR.S193029; Patil, M.V., Kandhare, A.D., Bhise, S.D., Effect of aqueous extract of Cucumis sativus Linn. fruit in ulcerative colitis in laboratory animals (2012) Asian Pac J Trop Biomed, 2, pp. 962-969. , https://doi.org/10.1016/S2221-1691(12)60344-X; Nash, R.J., Azantsa, B.K., Sharp, H., Shanmugham, V., Effectiveness of Cucumis sativus extract versus glucosamine-chondroitin in the management of moderate osteoarthritis: a randomized controlled trial (2018) Clin Interv Aging, 13, p. 2119. , https://doi.org/10.2147/CIA.S173227; Nafeesa, Z., Shivalingu, B.R., Neema, K.N., Achar, R.R., Venkatesh, B.K., Hanchinal, V., Priya, B.S., Swamy, S.N., Procoagulant serine glycoprotease from Cucumis sativus L.: action on human fibrinogen and fibrin clot (2017) Biotech, 7, p. 96. , https://doi.org/10.1007/s13205-017-0686-9

Indexed by Scopus

Leave a Comment