CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells

Clark A.J., Mullooly N., Safitri D., Harris M., de Vries T., MaassenVanDenBrink A., Poyner D.R., Gianni D., Wigglesworth M., Ladds G.

Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom; Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom; Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia; Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, Rotterdam, Netherlands; School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom; Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, United Kingdom


Agonist bias occurs when different ligands produce distinct signalling outputs when acting at the same receptor. However, its physiological relevance is not always clear. Using primary human cells and gene editing techniques, we demonstrate endogenous agonist bias with physiological consequences for the calcitonin receptor-like receptor, CLR. By switching the receptor-activity modifying protein (RAMP) associated with CLR we can “re-route” the physiological pathways activated by endogenous agonists calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2). AM2 promotes calcium-mediated nitric oxide signalling whereas CGRP and AM show pro-proliferative effects in cardiovascular cells, thus providing a rationale for the expression of the three peptides. CLR-based agonist bias occurs naturally in human cells and has a fundamental purpose for its existence. We anticipate this will be a starting point for more studies into RAMP function in native environments and their importance in endogenous GPCR signalling. © 2021, The Author(s).


Communications Biology

Publisher: Nature Research

Volume 4, Issue 1, Art No 776, Page – , Page Count

Journal Link:

doi: 10.1038/s42003-021-02293-w

Issn: 23993642

Type: All Open Access, Gold, Green


Smith, J.S., Lefkowitz, R.J., Rajagopal, S., Biased signalling: from simple switches to allosteric microprocessors (2018) Nat. Rev. Drug Disco., 17, pp. 243-260. , COI: 1:CAS:528:DC%2BC1cXjvFentw%3D%3D; Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M.M., Sexton, P.M., Mechanisms of signalling and biased agonism in G protein-coupled receptors (2018) Nat. Rev. Mol. Cell Biol., 19, pp. 638-653. , COI: 1:CAS:528:DC%2BC1cXhsFSqtbzO, PID: 30104700; Davenport, A.P., Scully, C.C.G., de Graaf, C., Brown, A.J.H., Maguire, J.J., Advances in therapeutic peptides targeting G protein-coupled receptors (2020) Nat. Rev. Drug Disco., 19, pp. 389-413. , COI: 1:CAS:528:DC%2BB3cXlt1Ciu70%3D; Kliewer, A., Morphine-induced respiratory depression is independent of beta-arrestin2 signalling (2020) Br. J. Pharm., 177, pp. 2923-2931. , COI: 1:CAS:528:DC%2BB3cXjtFersLw%3D; Russell, F.A., King, R., Smillie, S.J., Kodji, X., Brain, S.D., Calcitonin gene-related peptide: physiology and pathophysiology (2014) Physiol. Rev., 94, pp. 1099-1142. , COI: 1:CAS:528:DC%2BC2cXitFansbnI, PID: 25287861; Kato, J., Kitamura, K., Bench-to-bedside pharmacology of adrenomedullin (2015) Eur. J. Pharm., 764, pp. 140-148. , COI: 1:CAS:528:DC%2BC2MXhtFKisL%2FI; Tsuruda, T., Kato, J., Kuwasako, K., Kitamura, K., Adrenomedullin: continuing to explore cardioprotection (2019) Peptides, 111, pp. 47-54. , COI: 1:CAS:528:DC%2BC1cXms1GisLw%3D, PID: 29577955; Tanaka, M., The endothelial adrenomedullin-RAMP2 system regulates vascular integrity and suppresses tumour metastasis (2016) Cardiovasc. Res., 111, pp. 398-409. , COI: 1:CAS:528:DC%2BC2sXhtVCnsrjE, PID: 27307317; Morimoto, R., Expression of adrenomedullin2/intermedin in human brain, heart, and kidney (2007) Peptides, 28, pp. 1095-1103. , COI: 1:CAS:528:DC%2BD2sXkslegtb4%3D, PID: 17346853; Takei, Y., Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator (2004) FEBS Lett., 556, pp. 53-58. , COI: 1:CAS:528:DC%2BD2cXoslOn, PID: 14706825; Zhang, S.Y., Xu, M.J., Wang, X., Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases (2018) Br. J. Pharm., 175, pp. 1230-1240. , COI: 1:CAS:528:DC%2BC2sXnvFGgsbk%3D; Garelja, M.L., Molecular mechanisms of class B GPCR activation: insights from adrenomedullin receptors (2020) ACS Pharm. Transl. Sci., 3, pp. 246-262. , COI: 1:CAS:528:DC%2BB3cXjslSqs7c%3D; Hilairet, S., Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin (2001) J. Biol. Chem., 276, pp. 42182-42190. , COI: 1:CAS:528:DC%2BD3MXosVGnu7Y%3D, PID: 11535606; Kuwasako, K., Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and recycling (2000) J. Biol. Chem., 275, pp. 29602-29609. , COI: 1:CAS:528:DC%2BD3cXmvFKjsbY%3D, PID: 10882736; Heroux, M., Breton, B., Hogue, M., Bouvier, M., Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET (2007) Biochemistry, 46, pp. 7022-7033. , COI: 1:CAS:528:DC%2BD2sXlt1Ogsrw%3D, PID: 17503773; Hendrikse, E.R., Identification of small-molecule positive modulators of calcitonin-like receptor-based receptors (2020) ACS Pharm. Transl. Sci., 3, pp. 305-320. , COI: 1:CAS:528:DC%2BB3cXkslWrsL0%3D; Shenoy, S.K., beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor (2006) J. Biol. Chem., 281, pp. 1261-1273. , COI: 1:CAS:528:DC%2BD28Xit1Sgsg%3D%3D, PID: 16280323; McLatchie, L.M., RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor (1998) Nature, 393, pp. 333-339. , COI: 1:CAS:528:DyaK1cXjsFyjt78%3D, PID: 9620797; Weston, C., Receptor activity-modifying protein-directed G protein signaling specificity for the calcitonin gene-related peptide family of receptors (2016) J. Biol. Chem., 291, pp. 21925-21944. , COI: 1:CAS:528:DC%2BC28Xhs1OgsbbK, PID: 27566546; Woolley, M.J., Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs (2017) Biochem. Pharm., 142, pp. 96-110. , COI: 1:CAS:528:DC%2BC2sXhtFOlsLrM, PID: 28705698; Klein, K.R., Matson, B.C., Caron, K.M., The expanding repertoire of receptor activity modifying protein (RAMP) function (2016) Crit. Rev. Biochem Mol. Biol., 51, pp. 65-71. , COI: 1:CAS:528:DC%2BC28XnvFGltQ%3D%3D, PID: 26740457; Hay, D.L., Garelja, M.L., Poyner, D.R., Walker, C.S., Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25 (2018) Br. J. Pharm., 175, pp. 3-17. , COI: 1:CAS:528:DC%2BC2sXhvVOjsrzJ; Walker, C.S., A second trigeminal CGRP receptor: function and expression of the AMY1 receptor (2015) Ann. Clin. Transl. Neurol., 2, pp. 595-608. , COI: 1:CAS:528:DC%2BC2MXhtVajurjO, PID: 26125036; Takasaki, J., A novel Galphaq/11-selective inhibitor (2004) J. Biol. Chem., 279, pp. 47438-47445. , COI: 1:CAS:528:DC%2BD2cXptl2gtLw%3D, PID: 15339913; Ueda, K., Adrenomedullin causes coronary vasodilation in humans: effects of inhibition of nitric oxide synthesis (2005) J. Cardiovasc Pharm., 46, pp. 534-539. , COI: 1:CAS:528:DC%2BD2MXpvFOrsr8%3D; Farah, C., Michel, L.Y.M., Balligand, J.L., Nitric oxide signalling in cardiovascular health and disease (2018) Nat. Rev. Cardiol., 15, pp. 292-316. , COI: 1:CAS:528:DC%2BC1cXitVahsbs%3D, PID: 29388567; Black, J.W., Leff, P., Operational models of pharmacological agonism (1983) Proc. R. Soc. Lond. B Biol. Sci., 220, pp. 141-162. , COI: 1:CAS:528:DyaL2cXmtFaqtA%3D%3D, PID: 6141562; Weston, C., Modulation of glucagon receptor pharmacology by receptor activity-modifying protein-2 (RAMP2) (2015) J. Biol. Chem., 290, pp. 23009-23022. , COI: 1:CAS:528:DC%2BC2MXhsFagurvI, PID: 26198634; Kuwasako, K., Kitamura, K., Nagata, S., Hikosaka, T., Kato, J., Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2 (2010) Biochem Biophys. Res Commun., 392, pp. 380-385. , COI: 1:CAS:528:DC%2BC3cXitVGqu74%3D, PID: 20074556; Brinkman, E.K., Easy quantification of template-directed CRISPR/Cas9 editing (2018) Nucleic Acids Res, 46. , PID: 29538768, COI: 1:CAS:528:DC%2BC1cXitlKhu7jO; Sexton, P.M., Poyner, D.R., Simms, J., Christopoulos, A., Hay, D.L., RAMPs as drug targets (2012) Adv. Exp. Med Biol., 744, pp. 61-74. , COI: 1:CAS:528:DC%2BC38Xhs1WgtbzP, PID: 22434108; Alexander, S.P.H., THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors (2019) Br. J. Pharm., 176, pp. S21-S141; Walker, C.S., Regulation of signal transduction by calcitonin gene-related peptide receptors (2010) Trends Pharm. Sci., 31, pp. 476-483. , COI: 1:CAS:528:DC%2BC3cXht1Wisr%2FM, PID: 20633935; Ma, F., Adrenomedullin inhibits osmotic water permeability in rat inner medullary collecting ducts (2020) Cells, 24, p. E2533. , COI: 1:CAS:528:DC%2BB3MXnvFyitbo%3D; Yarwood, R.E., Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission (2017) Proc. Natl Acad. Sci. USA, 114, pp. 12309-12314. , COI: 1:CAS:528:DC%2BC2sXhslemsr3N, PID: 29087309; Yoon, S.P., Kim, J., Exogenous CGRP upregulates profibrogenic growth factors through PKC/JNK signaling pathway in kidney proximal tubular cells (2018) Cell Biol. Toxicol., 34, pp. 251-262. , COI: 1:CAS:528:DC%2BC2sXosVWitrY%3D, PID: 28540451; Temmesfeld-Wollbrück, B., Hocke, A.C., Suttorp, N., Hippenstiel, S., Adrenomedullin and endothelial barrier function (2007) Thromb. Haemost., 98, pp. 944-951. , PID: 18000597, COI: 1:CAS:528:DC%2BD2sXhsVWrsbjO; Hocke, A.C., Perturbation of endothelial junction proteins by Staphylococcus aureus alpha-toxin: inhibition of endothelial gap formation by adrenomedullin (2006) Histochem Cell Biol., 126, pp. 305-316. , COI: 1:CAS:528:DC%2BD28XotFKmurY%3D, PID: 16596365; De Matteo, R., May, C.N., Direct coronary vasodilator action of adrenomedullin is mediated by nitric oxide (2003) Br. J. Pharm., 140, pp. 1414-1420. , COI: 1:CAS:528:DC%2BD2cXhsV2qsw%3D%3D; Chang, L., Karin, M., Mammalian MAP kinase signalling cascades (2001) Nature, 410, pp. 37-40. , COI: 1:CAS:528:DC%2BD3MXhvVSgs7k%3D, PID: 11242034; Pagès, G., Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation (1993) Proc. Natl Acad. Sci. USA, 90, pp. 8319-8323. , PID: 8397401; Lefloch, R., Pouysségur, J., Lenormand, P., Total ERK1/2 activity regulates cell proliferation (2009) Cell Cycle, 8, pp. 705-711. , COI: 1:CAS:528:DC%2BD1MXlvFWju74%3D, PID: 19242111; Srinivasan, R., Erk1 and Erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis (2009) PLoS One, 4. , PID: 20011539, COI: 1:CAS:528:DC%2BD1MXhsFOnu7fO; Pintucci, G., Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells (2002) FASEB J., 16, pp. 598-600. , COI: 1:CAS:528:DC%2BD38XivVOjtLc%3D, PID: 11919166; Mavria, G., ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis (2006) Cancer Cell, 9, pp. 33-44. , COI: 1:CAS:528:DC%2BD28XosFersA%3D%3D, PID: 16413470; Ando, K., Pegram, B.L., Frohlich, E.D., Hemodynamic effects of calcitonin gene-related peptide in spontaneously hypertensive rats (1990) Am. J. Physiol., 258, pp. R425-R429. , COI: 1:CAS:528:DyaK3cXhtlarsL4%3D, PID: 2309935; Gardiner, S.M., Antagonistic effect of human alpha-calcitonin gene-related peptide (8-37) on regional hemodynamic actions of rat islet amyloid polypeptide in conscious Long-Evans rats (1991) Diabetes, 40, pp. 948-951. , COI: 1:CAS:528:DyaK3MXlvF2it7Y%3D, PID: 1860559; Krzeminski, K., The role of adrenomedullin in cardiovascular response to exercise – a review (2016) J. Hum. Kinet., 53, pp. 127-142. , PID: 28149418; Ihara, T., Ikeda, U., Tate, Y., Ishibashi, S., Shimada, K., Positive inotropic effects of adrenomedullin on rat papillary muscle (2000) Eur. J. Pharm., 390, pp. 167-172. , COI: 1:CAS:528:DC%2BD3cXhsFKjs7k%3D; Perret, M., The effect of adrenomedullin on the isolated heart (1993) Life Sci., 53, pp. PL377-PL379. , COI: 1:CAS:528:DyaK2cXhtlGm, PID: 8231646; Mukherjee, R., Effects of adrenomedullin on human myocyte contractile function and beta-adrenergic response (2002) J. Cardiovasc. Pharm. Ther., 7, pp. 235-240. , COI: 1:CAS:528:DC%2BD3sXkslSmsQ%3D%3D; Voors, A.A., Adrenomedullin in heart failure: pathophysiology and therapeutic application (2019) Eur. J. Heart Fail, 21, pp. 163-171. , COI: 1:CAS:528:DC%2BC1MXjtVSnt7g%3D, PID: 30592365; Kataoka, Y., The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction (2010) J. Cardiovasc. Pharm., 56, pp. 413-419. , COI: 1:CAS:528:DC%2BC3cXht1Grs7%2FO; Dong, F., Taylor, M.M., Samson, W.K., Ren, J., Intermedin (adrenomedullin-2) enhances cardiac contractile function via a protein kinase C- and protein kinase A-dependent pathway in murine ventricular myocytes (2006) J. Appl Physiol., 101, pp. 778-784. , COI: 1:CAS:528:DC%2BD28XpvVCkur4%3D, PID: 16763098; Gray, D.W., Marshall, I., Human alpha-calcitonin gene-related peptide stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide (1992) Br. J. Pharm., 107, pp. 691-696. , COI: 1:CAS:528:DyaK3sXht1Cg; Zhao, Y., Differential expression of components of the cardiomyocyte adrenomedullin/intermedin receptor system following blood pressure reduction in nitric oxide-deficient hypertension (2005) J. Pharm. Exp. Ther., 316, pp. 1269-1281. , COI: 1:CAS:528:DC%2BD28Xit1SgsLw%3D; Roehrkasse, A.M., Warner, M.L., Booe, J.M., Pioszak, A.A., Biochemical characterization of G protein coupling to calcitonin gene-related peptide and adrenomedullin receptors using a native PAGE assay (2020) J. Biol. Chem., 295, pp. 9736-9751. , COI: 1:CAS:528:DC%2BB3cXhsFemsbrN, PID: 32487746; Ran, F.A., Genome engineering using the CRISPR-Cas9 system (2013) Nat. Protoc., 8, pp. 2281-2308. , COI: 1:CAS:528:DC%2BC2cXjvFajsA%3D%3D, PID: 24157548; Routledge, S.J., Receptor component protein, an endogenous allosteric modulator of family B G protein coupled receptors (2020) Biochim Biophys. Acta Biomembr., 1862, p. 183174. , COI: 1:CAS:528:DC%2BB3cXksFaitQ%3D%3D, PID: 31887275; Knight, A., Discovery of novel adenosine receptor agonists that exhibit subtype selectivity (2016) J. Med Chem., 59, pp. 947-964. , COI: 1:CAS:528:DC%2BC28Xmslemtw%3D%3D, PID: 26756468; Safitri, D., Elevated intracellular cAMP concentrations mediates growth suppression in glioma cells (2020) Biochem Pharm., 174, p. 113823. , COI: 1:CAS:528:DC%2BB3cXis12lsbk%3D, PID: 31987856; Holton, M., Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells (2010) Cardiovasc Res, 87, pp. 440-448. , COI: 1:CAS:528:DC%2BC3cXptVylur0%3D, PID: 20211863; Vaniotis, G., Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors (2013) J. Mol. Cell Cardiol., 62, pp. 58-68. , COI: 1:CAS:528:DC%2BC3sXht1ShtLrM, PID: 23684854; Gauthier, C., The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle (1998) J. Clin. Invest, 102, pp. 1377-1384. , COI: 1:CAS:528:DyaK1cXmsFOrsrc%3D, PID: 9769330; Curtis, M., Clarification of the basis for the selection of requirements for publication in the (2018) British Journal of Pharmacology. Br. J. Pharmacol., 175, pp. 987-999

Indexed by Scopus

Leave a Comment