Cellulose nanocrystal (Cnc) capsules from oil palm empty fruit bunches (opefb)

Soetaredjo F.E., Santoso S.P., Waworuntu G.L., Darsono F.L.

Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia; Faculty of Medicine, Widya Mandala Surabaya Catholic University, Kalisari Selatan No. 1, Surabaya, 60112, Indonesia; Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Kalisari Selatan No. 1, Surabaya, 60112, Indonesia


Abstract

The raw material used for this NCC production was oil palm empty bunches (OPEFB), currently waste from oil palm plantations. Delignification of OPEFB was carried out using 2 N NaOH solution at 70oC for 6 hours. NCC maximum yield from OPEFB is 62.1% (dry cellulose basis) obtained at a concentration of 54% sulfuric acid and a temperature of 50oC. The addition of plasticizers (glycerol and PEG) reduced the elastic modulus of NCC capsules from 7951.4 MPa to 4758 MPa (glycerol) and 3225 (PEG). The addition of glycerol and PEG did not affect the disintegration time of NCC capsules. NCC capsules have a release capability similar to the commercially available gelatin capsules. At 14 minutes, discharge reached about 43%, and it becomes constant after 18 minutes. © 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Capsules; Gelatin; Nanocrystalline cellulose


Journal

Biointerface Research in Applied Chemistry

Publisher: AMG Transcend Association

Volume 12, Issue 2, Art No , Page 2013 – 2021, Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110105768&doi=10.33263%2fBRIAC122.20132021&partnerID=40&md5=01fb816833282d38a5d13c4d12db2f48

doi: 10.33263/BRIAC122.20132021

Issn: 20695837

Type:


References

Zhang, Y., Zhao, Q., Wang, H., Jiang, X., Cha, R., Preparation of green and gelatin-free nanocrystalline cellulose capsules (2017) Carbohydr. Polym, 164, pp. 358-363. , https://doi.org/10.1016/j.carbpol.2017.01.096; Misale, B.V., Gavali, H.B.M., Katare, S.D., Yadav, A.V., Sago starch capsule shell: A suitable alternative to gelatin capsule shells (2008) Indian J. Pharm. Educ. Res, 42, pp. 48-52; Mali, S., Sakanaka, L.S., Yamashita, F., Grossmann, M.V.E., Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect (2005) Carbohydr. Polym, 60, pp. 283-289. , https://doi.org/10.1016/j.carbpol.2005.01.003; Lu, C.L., Feng, Q., Chen, H., Liu, L.P., Preparation and performance test of vegetable enteric hollow capsules by one-line molding process (2015) Chinese Pharm. J, 50, pp. 2057-2063; Bayoumi, A., Sarg, M.T., Fahmy, T.Y.A., Mohamed, N.F., El-Zawawy, W.K., The behavior of natural biomass materials as drug carriers in releasing loaded Gentamicin sulphate (2020) Arab. J. Chem, 13, pp. 8920-8934. , https://doi.org/10.1016/j.arabjc.2020.10.018; Murizan, N.I.S., Mustafa, N.S., Ngadiman, N.H.A., Yusof, N.M., Idris, A., Review on nanocrystalline cellulose in bone tissue engineering applications (2020) Polymers, 12. , https://doi.org/10.3390/polym12122818; Gupta, R.D., Raghav, N., Differential effect of surfactants tetra-n-butyl ammonium bromide and N-Cetyl-N, N, N-trimethyl ammonium bromide bound to nano-cellulose on binding and sustained release of some non-steroidal anti-inflammatory drugs (2020) Int. J. Biol. Macromol, 164, pp. 2745-2752. , https://doi.org/10.1016/j.ijbiomac.2020.08.091; Jadhav, S., Kaur, A., Bansal, A.K., Comparison of downstream processing of nanocrystalline solid dispersion and nanosuspension of diclofenac acid to develop solid oral dosage form (2020) Pharmaceutics, 12, pp. 1-24. , https://doi.org/10.3390/pharmaceutics12111015; Foo, M.L., Ooi, C.W., Tan, K.W., Chew, I.M.L., A Step Closer to Sustainable Industrial Production: Tailor the Properties of Nanocrystalline Cellulose from Oil Palm Empty Fruit Bunch (2020) J. Env. Chem. Eng, 8. , https://doi.org/10.1016/j.jece.2020.104058; Farooq Adil, S., Bhat, V.S., Batoo, K.M., Imran, A., Assal, M.E., Madhusudhan, B., Khan, M., Al-Warthan, A., Isolation and characterization of nanocrystalline cellulose from flaxseed Hull: A future onco-drug delivery agent (2020) J. Saudi Chem. Soc, 24, pp. 374-379. , https://doi.org/10.1016/j.jscs.2020.03.002; Gupta, R.D., Raghav, N., Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs (2020) Int. J. Biol. Macromol, 147, pp. 921-930. , https://doi.org/10.1016/j.ijbiomac.2019.10.057; Bundjaja, V., Sari, T.M., Soetaredjo, F.E., Yuliana, M., Angkawijaya, A.E., Ismadji, S., Cheng, K.-C., Santoso, S.P., Aqueous sorption of tetracycline using rarasaponin-modified nanocrystalline cellulose (2020) J. Mol. Liq, 301. , https://doi.org/10.1016/j.molliq.2019.112433; Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S.Y., Yuen, K.H., Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review (2019) ACS Sustain. Chem. Eng, 7, pp. 15800-15827. , https://doi.org/10.1021/acssuschemeng.9b02744; Foo, M.L., Tan, C.R., Lim, P.D., Ooi, C.W., Tan, K.W., Chew, I.M.L., Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin (2019) Int. J. Biol. Macromol, 138, pp. 1064-1071. , https://doi.org/10.1016/j.ijbiomac.2019.07.035; Karimian, A., Parsian, H., Majidinia, M., Rahimi, M., Mir, S.M., Samadi Kafil, H., Shafiei-Irannejad, V., Yousefi, B., Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems (2019) Int. J. Biol. Macromol, 133, pp. 850-859. , https://doi.org/10.1016/j.ijbiomac.2019.04.117; Akhavan-Kharazian, N., Izadi-Vasafi, H., Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications (2019) Int. J. Biol. Macromol, 133, pp. 881-891. , https://doi.org/10.1016/j.ijbiomac.2019.04.159; Putro, J.N., Ismadji, S., Gunarto, C., Yuliana, M., Santoso, S.P., Soetaredjo, F.E., Ju, Y.H., The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study (2019) J. Mol. Liq, 282, pp. 407-414. , https://doi.org/10.1016/j.molliq.2019.03.037; Karimi-Dehkordi, N., Minaiyan, M., Talebi, A., Akbari, V., Taheri, A., Nanocrystalline cellulose-hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing (2019) Biomed. Mater, 14. , https://doi.org/10.1088/1748-605x/ab026c; Xie, J., Luo, Y., Liu, Y., Ma, Y., Yue, P., Yang, M., Novel redispersible nanosuspensions stabilized by co-processed nanocrystalline cellulose–Sodium carboxymethyl starch for enhancing dissolution and oral bioavailability of baicalin (2019) Int. J. Nanomedicine, 14, pp. 353-369. , https://doi.org/10.2147/IJN.S184374; Wijaya, C.J., Saputra, S.N., Soetaredjo, F.E., Putro, J.N., Lin, C.X., Kurniawan, A., Ju, Y.H., Ismadji, S., Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier (2017) Carbohydr. Polym, 175, pp. 370-376. , https://doi.org/10.1016/j.carbpol.2017.08.004; Oh, Y., Park, S., Jung, D., Oh, K.K., Lee, S.H., Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood (2020) Int. J. Biol. Macromol, 165, pp. 187-197. , https://doi.org/10.1016/j.ijbiomac.2020.09.145; Zakaria, S.M., Idris, A., Chandrasekaram, K., Alias, Y., Efficiency of bronsted acidic ionic liquids in the dissolution and depolymerization of lignin from rice husk into high value-added products (2020) Ind. Crops Prod, 157. , https://doi.org/10.1016/j.indcrop.2020.112885; Davaritouchaee, M., Chen, S., Mancini, R.J., Delignification and Enzyme-Diffusion Kinetics of Radical Systems Treating Wheat Straw (2020) Ind. Eng. Chem. Res, 59, pp. 20656-20666. , https://doi.org/10.1021/acs.iecr.0c04107; Wang, J.-X., Asano, S., Kudo, S., Hayashi, J.-I., Deep Delignification of Woody Biomass by Repeated Mild Alkaline Treatments with Pressurized O2 (2020) ACS Omega, 5, pp. 29168-29176. , https://doi.org/10.1021/acsomega.0c03953; Okur, M., Eslek-Koyuncu, D.D., Investigation of pretreatment parameters in the delignification of paddy husks with deep eutectic solvents (2020) Biomass Bioenergy, 142. , https://doi.org/10.1016/j.biombioe.2020.105811

Indexed by Scopus

Leave a Comment