Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism

Marofi F., Tahmasebi S., Rahman H.S., Kaigorodov D., Markov A., Yumashev A.V., Shomali N., Chartrand M.S., Pathak Y., Mohammed R.N., Jarahian M., Motavalli R., Motavalli Khiavi F.

Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq; Director of Research Institute “MitoKey”, Moscow State Medical University, Moscow, Russian Federation; Tyumen State Medical University, Tyumen Industrial University, Tyumen, Russian Federation; Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, 119991, Russian Federation; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; DigiCare Behavioral Research, Casa Grande, AZ, United States; Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States; Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia; Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq; Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, 69120, Germany; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran


Abstract

Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell’s history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells. © 2021, The Author(s).

Adoptive cell therapy; CAR-T cells; Hematological malignancy; Multiple myeloma


Journal

Stem Cell Research and Therapy

Publisher: BioMed Central Ltd

Volume 12, Issue 1, Art No 217, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103537998&doi=10.1186%2fs13287-021-02283-z&partnerID=40&md5=74ee3d977b5b434af51f6f31c422b48e

doi: 10.1186/s13287-021-02283-z

Issn: 17576512

Type: All Open Access, Gold


References

Kumar, S.K., Rajkumar, V., Kyle, R.A., van Duin, M., Sonneveld, P., Mateos, M.V., Gay, F., Anderson, K.C., Multiple myeloma (2017) Nat Rev Dis Prim, 3, p. 17046. , PID: 28726797; Sahara, N., Takeshita, A., Shigeno, K., Fujisawa, S., Takeshita, K., Naito, K., Ihara, M., Nara, K., Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma (2002) Bri J Haematol, 117, pp. 882-885; Mateos, M.V., Ludwig, H., Bazarbachi, H., Beksac, M., Bladé, J., Boccadoro, M., Cavo, M., Facon, T., Insights on multiple myeloma treatment strategies (2019) Hemasphere, 3; Kumar, S.K., Dispenzieri, A., Lacy, M.Q., Gertz, M.A., Buadi, F.K., Pandey, S., Kapoor, P., Leung, N., Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients (2014) Leukemia, 28, pp. 1122-1128. , COI: 1:STN:280:DC%2BC2c%2Fps1SqtQ%3D%3D, PID: 24157580; De Weers, M., Tai, Y.-T., Van Der Veer, M.S., Bakker, J.M., Vink, T., Jacobs, D.C., Oomen, L.A., Slootstra, J.W., Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors (2011) J Immunol, 186, pp. 1840-1848. , PID: 21187443, COI: 1:CAS:528:DC%2BC3MXnsVOgtQ%3D%3D; Lonial, S., Dimopoulos, M., Palumbo, A., White, D., Grosicki, S., Spicka, I., Walter-Croneck, A., Magen, H., Elotuzumab therapy for relapsed or refractory multiple myeloma (2015) N Engl J Med, 373, pp. 621-631. , COI: 1:CAS:528:DC%2BC2MXhsFaisLvL, PID: 26035255; Gattinoni, L., Powell, D.J., Rosenberg, S.A., Restifo, N.P., Adoptive immunotherapy for cancer: building on success (2006) Nat Rev Immunol, 6, pp. 383-393. , COI: 1:CAS:528:DC%2BD28XjslOgsrw%3D, PID: 16622476; Elahi, R., Khosh, E., Tahmasebi, S., Esmaeilzadeh, A., Immune cell hacking: challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells (2018) Front Immunol, 9, p. 1717. , PID: 30108584, COI: 1:CAS:528:DC%2BC1cXitlKiurvN; Shirafkan, N., Shomali, N., Kazemi, T., Shanehbandi, D., Ghasabi, M., Baghbani, E., Ganji, M., Baradaran, B., microRNA-193a-5p inhibits migration of human HT-29 colon cancer cells via suppression of metastasis pathway (2019) J Cell Biochem, 120, pp. 8775-8783. , COI: 1:CAS:528:DC%2BC1cXitlKlsrrL; Tahmasebi, S., Elahi, R., Esmaeilzadeh, A., Solid tumors challenges and new insights of CAR T cell engineering (2019) Stem Cell Rev Rep, 15, pp. 619-636. , PID: 31161552; Au, R., Immunooncology: Can the right chimeric antigen receptors T-cell design be made to cure all types of cancers and will it be covered? (2017) J Pharmaceutics, 2017; Gross, G., Waks, T., Eshhar, Z., Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity (1989) Proc National Acad Sci, 86, pp. 10024-10028. , COI: 1:CAS:528:DyaK3cXntFChsw%3D%3D; June, C.H., Sadelain, M., Chimeric antigen receptor therapy (2018) N Engl J Med, 379, pp. 64-73. , COI: 1:CAS:528:DC%2BC1cXhtlert7rL, PID: 29972754; Sadelain, M., CD19 CAR T cells (2017) Cell, 171, p. 1471. , COI: 1:CAS:528:DC%2BC2sXhvF2jsbfM, PID: 29245005; Gahrton, G., Svensson, H., Cavo, M., Apperley, J., Bacigalupo, A., Björkstrand, B., Blade, J., Facon, T., Progress in allogeneic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–98 at European Group for Blood and Marrow Transplantation centres (2001) Br J Haematol, 113, pp. 209-216. , COI: 1:STN:280:DC%2BD3M3nt1Siuw%3D%3D, PID: 11360893; Dhakal, B., Vesole, D., Hari, P., Allogeneic stem cell transplantation for multiple myeloma: is there a future? (2016) Bone Marrow Transplant, 51, pp. 492-500. , COI: 1:CAS:528:DC%2BC28XksFOjug%3D%3D, PID: 26726943; San Miguel, J.F., Garcia-Sanz, R., Gonzalez, M., Orfao, A., Immunophenotype and DNA cell content in multiple myeloma (1995) Baillière’s Clin Haematol, 8, pp. 735-759. , COI: 1:STN:280:DyaK28vgtF2itQ%3D%3D; Nelson, A.L., Dhimolea, E., Reichert, J.M., Development trends for human monoclonal antibody therapeutics (2010) Nat Rev Drug Discov, 9, pp. 767-774. , COI: 1:CAS:528:DC%2BC3cXhtFSisLnO, PID: 20811384; Lambert, J.M., Drug-conjugated antibodies for the treatment of cancer (2013) Br J Clin Pharmacol, 76, pp. 248-262. , COI: 1:CAS:528:DC%2BC3sXhtFOksLvP, PID: 23173552; Chung, C., Role of immunotherapy in targeting the bone marrow microenvironment in multiple myeloma: an evolving therapeutic strategy (2017) Pharmacotherapy, 37, pp. 129-143. , COI: 1:CAS:528:DC%2BC2sXht1Clur8%3D, PID: 27870103; Kelly, K.R., Chanan-Khan, A., Heffner, L.T., Somlo, G., Siegel, D.S., Zimmerman, T., Karnad, A., Greenberg, A.L., Indatuximab ravtansine (BT062) in combination with lenalidomide and low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma: clinical activity in patients already exposed to lenalidomide and bortezomib (2014) Blood, 124, p. 4736; Baeuerle, P.A., Reinhardt, C., Bispecific T-cell engaging antibodies for cancer therapy (2009) Cancer Res, 69, pp. 4941-4944. , COI: 1:CAS:528:DC%2BD1MXnt1eqt7c%3D, PID: 19509221; Zou, J., Chen, D., Zong, Y., Ye, S., Tang, J., Meng, H., An, G., Yang, L., Immunotherapy based on bispecific T-cell engager with hIgG 1 Fc sequence as a new therapeutic strategy in multiple myeloma (2015) Cancer Sci, 106, pp. 512-521. , COI: 1:CAS:528:DC%2BC2MXoslCgtbk%3D, PID: 25664501; Dong, H., Strome, S.E., Salomao, D.R., Tamura, H., Hirano, F., Flies, D.B., Roche, P.C., Chen, L., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion (2002) Nat Med, 8, pp. 793-800. , COI: 1:CAS:528:DC%2BD38Xls12msLo%3D, PID: 12091876; Tamura, H., Ishibashi, M., Yamashita, T., Tanosaki, S., Okuyama, N., Kondo, A., Hyodo, H., Dong, H., Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma (2013) Leukemia, 27, pp. 464-472. , COI: 1:CAS:528:DC%2BC3sXit1Gnt7c%3D, PID: 22828443; Lesokhin, A.M., Ansell, S.M., Armand, P., Scott, E.C., Halwani, A., Gutierrez, M., Millenson, M.M., Lebovic, D., Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study (2016) J Clin Oncol, 34, p. 2698. , COI: 1:CAS:528:DC%2BC28XitFelsL7P, PID: 27269947; Badros, A., Hyjek, E., Ma, N., Lesokhin, A., Dogan, A., Rapoport, A.P., Kocoglu, M., Milliron, T., Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma (2017) Blood, 130, pp. 1189-1197. , COI: 1:CAS:528:DC%2BC1cXhsVOms70%3D, PID: 28461396; Bae, J., Smith, R., Daley, J., Mimura, N., Tai, Y.-T., Anderson, K.C., Munshi, N.C., Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders (2012) Clin Cancer Res, 18, pp. 4850-4860. , COI: 1:CAS:528:DC%2BC38Xht1ygsb3P, PID: 22753586; Bae, J., Prabhala, R., Voskertchian, A., Brown, A., Maguire, C., Richardson, P., Dranoff, G., Munshi, N.C., A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients (2015) Leukemia, 29, pp. 218-229. , COI: 1:CAS:528:DC%2BC2cXhtVWhtLfI, PID: 24935722; Rosenblatt, J., Avivi, I., Vasir, B., Uhl, L., Munshi, N.C., Katz, T., Dey, B.R., Campigotto, F., Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients (2013) Clin Cancer Res, 19, pp. 3640-3648. , COI: 1:CAS:528:DC%2BC3sXhtValt7fN, PID: 23685836; Rosenblatt, J., Vasir, B., Uhl, L., Blotta, S., MacNamara, C., Somaiya, P., Wu, Z., Dombagoda, D., Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma (2011) Blood, 117, pp. 393-402. , COI: 1:CAS:528:DC%2BC3MXht1aqsLo%3D, PID: 21030562; Vallet, S., Pecherstorfer, M., Podar, K., Adoptive cell therapy in multiple myeloma (2017) Expert Opin Biol Ther, 17, pp. 1511-1522. , PID: 28857616; Brentjens, R.J., Davila, M.L., Riviere, I., Park, J., Wang, X., Cowell, L.G., Bartido, S., Olszewska, M., CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia (2013) Sci Transl Med, 5, p. 177ra138. , COI: 1:CAS:528:DC%2BC3sXltFSnsrk%3D; Garfall, A.L., Maus, M.V., Hwang, W.-T., Lacey, S.F., Mahnke, Y.D., Melenhorst, J.J., Zheng, Z., Weiss, B.M., Chimeric antigen receptor T cells against CD19 for multiple myeloma (2015) N Engl J Med, 373, pp. 1040-1047. , COI: 1:CAS:528:DC%2BC28XkvFGgug%3D%3D, PID: 26352815; Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., Wright, J.F., Chimeric antigen receptor–modified T cells for acute lymphoid leukemia (2013) N Engl J Med, 368, pp. 1509-1518. , COI: 1:CAS:528:DC%2BC3sXmsFKgtLo%3D, PID: 23527958; Lee, D.W., Kochenderfer, J.N., Stetler-Stevenson, M., Cui, Y.K., Delbrook, C., Feldman, S.A., Fry, T.J., Shah, N.N., T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial (2015) Lancet, 385, pp. 517-528. , COI: 1:CAS:528:DC%2BC2cXhslGjtLbM, PID: 25319501; Neelapu, S.S., Locke, F.L., Bartlett, N.L., Lekakis, L.J., Miklos, D.B., Jacobson, C.A., Braunschweig, I., Lin, Y., Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma (2017) N Engl J Med, 377, pp. 2531-2544. , COI: 1:CAS:528:DC%2BC1MXhtVGjtbw%3D, PID: 29226797; Hock, R.A., Miller, A.D., Retrovirus-mediated transfer and expression of drug resistance genes in human haematopoietic progenitor cells (1986) Nature, 320, pp. 275-277. , COI: 1:CAS:528:DyaL28XhvVWju7s%3D, PID: 3960109; Johnson, L.A., June, C.H., Driving gene-engineered T cell immunotherapy of cancer (2017) Cell Res, 27, pp. 38-58. , COI: 1:CAS:528:DC%2BC28XitFOhs7nF, PID: 28025979; Toneguzzo, F., Keating, A., Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated DNA transfer (1986) Proc Natl Acad Sci, 83, pp. 3496-3499. , COI: 1:CAS:528:DyaL28XkslemtL8%3D, PID: 3458192; Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H., Liposomes as gene carriers: efficient transformation of mouse L cells by thymidine kinase gene (1982) Science, 215, pp. 166-168. , COI: 1:CAS:528:DyaL38XotVOjtg%3D%3D, PID: 7053567; Marofi, F., Motavalli, R., Safonov, V.A., Thangavelu, L., Yumashev, A.V., Alexander, M., Shomali, N., Jarahian, M., CAR T cells in solid tumors: challenges and opportunities (2021) Stem Cell Res Ther, 12, pp. 1-16. , COI: 1:CAS:528:DC%2BB3MXht1aktLc%3D; Srivastava, S., Riddell, S.R., Engineering CAR-T cells: design concepts (2015) Trends Immunol, 36, pp. 494-502. , COI: 1:CAS:528:DC%2BC2MXhtFWis7bM, PID: 26169254; Tahmasebi, S., Elahi, R., Khosh, E., Esmaeilzadeh, A., Programmable and multi-targeted CARs: a new breakthrough in cancer CAR-T cell therapy (2020) Clin Transl Oncol; Chmielewski, M., Hombach, A.A., Abken, H., Of CAR s and TRUCK s: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma (2014) Immunol Rev, 257, pp. 83-90. , COI: 1:CAS:528:DC%2BC3sXhvFequrnP, PID: 24329791; Esmaeilzadeh, A., Tahmasebi, S., Athari, S.S., Chimeric antigen receptor-T cell therapy: applications and challenges in treatment of allergy and asthma (2020) Biomed Pharmacother, 123, p. 109685. , COI: 1:CAS:528:DC%2BC1MXisVGgs77L, PID: 31862474; Zhao, Z., Chen, Y., Francisco, N.M., Zhang, Y., Wu, M., The application of CAR-T cell therapy in hematological malignancies: advantages and challenges (2018) Acta Pharm Sin B, 8, pp. 539-551. , PID: 30109179; Kochenderfer, J.N., Wilson, W.H., Janik, J.E., Dudley, M.E., Stetler-Stevenson, M., Feldman, S.A., Maric, I., Lanier, B.J., Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19 (2010) Blood, 116, pp. 4099-4102. , COI: 1:CAS:528:DC%2BC3cXhsFCiu7fK, PID: 20668228; Porter, D.L., Levine, B.L., Kalos, M., Bagg, A., June, C.H., Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia (2011) N Engl J Med, 365, pp. 725-733. , COI: 1:CAS:528:DC%2BC3MXhtV2lu7nP, PID: 21830940; Fry, T.J., Shah, N.N., Orentas, R.J., Stetler-Stevenson, M., Yuan, C.M., Ramakrishna, S., Wolters, P., Yates, B., CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy (2018) Nat Med, 24, p. 20. , COI: 1:CAS:528:DC%2BC2sXhvVaksrjM, PID: 29155426; Haso, W., Lee, D.W., Shah, N.N., Stetler-Stevenson, M., Yuan, C.M., Pastan, I.H., Dimitrov, D.S., Barrett, D.M., Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia (2013) Blood, 121, pp. 1165-1174. , COI: 1:CAS:528:DC%2BC3sXjt1WhsLw%3D, PID: 23243285; Till, B.G., Jensen, M.C., Wang, J., Chen, E.Y., Wood, B.L., Greisman, H.A., Qian, X., Forman, S.J., Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells (2008) Blood, 112, pp. 2261-2271. , COI: 1:CAS:528:DC%2BD1cXhtFCrurjL, PID: 18509084; Zhang, W.-Y., Wang, Y., Guo, Y.-L., Dai, H.-R., Yang, Q.-M., Zhang, Y.-J., Zhang, Y., Feng, K.-C., Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report (2016) Signal Transduct Target Ther, 1, pp. 1-9; Tai, Y.-T., Anderson, K.C., Targeting B-cell maturation antigen in multiple myeloma (2015) Immunotherapy, 7, pp. 1187-1199. , COI: 1:CAS:528:DC%2BC2MXhvVyktbvN, PID: 26370838; Tai, Y.-T., Acharya, C., An, G., Moschetta, M., Zhong, M.Y., Feng, X., Cea, M., van Eenennaam, H., APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment (2016) Blood, 127, pp. 3225-3236. , COI: 1:CAS:528:DC%2BC28Xhs12kurzJ, PID: 27127303; Topp, M.S., Duell, J., Zugmaier, G., Attal, M., Moreau, P., Langer, C., Kroenke, J., Munzert, G., Treatment with AMG 420, an anti-B-cell maturation antigen (BCMA) bispecific T-cell engager (BiTE®) antibody construct, induces minimal residual disease (MRD) negative complete responses in relapsed and/or refractory (R/R) multiple myeloma (MM) patients: results of a first-in-human (FIH) phase I dose escalation study (2018) Blood, 132, p. 1010; Trudel, S., Lendvai, N., Popat, R., Voorhees, P.M., Reeves, B., Libby, E.N., Richardson, P.G., Yong, K., Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial (2018) Lancet Oncol, 19, pp. 1641-1653. , COI: 1:CAS:528:DC%2BC1cXitFyhur%2FJ, PID: 30442502; Lee, L., Bounds, D., Paterson, J., Herledan, G., Sully, K., Seestaller-Wehr, L.M., Fieles, W.E., Germaschewski, F.M., Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma (2016) Bri J Haematol, 174, pp. 911-922. , COI: 1:CAS:528:DC%2BC28XhsVGis7rM; Sanchez, E., Gillespie, A., Tang, G., Ferros, M., Harutyunyan, N.M., Vardanyan, S., Gottlieb, J., Chen, H., Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma (2016) Clin Cancer Res, 22, pp. 3383-3397. , COI: 1:CAS:528:DC%2BC28XhtVyiurbJ, PID: 26960399; Brudno, J.N., Maric, I., Hartman, S.D., Rose, J.J., Wang, M., Lam, N., Stetler-Stevenson, M., Pavletic, S., T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma (2018) J Clin Oncol, 36, p. 2267. , COI: 1:CAS:528:DC%2BC1MXisVyisLo%3D, PID: 29812997; Friedman, K.M., Garrett, T.E., Evans, J.W., Horton, H.M., Latimer, H.J., Seidel, S.L., Horvath, C.J., Morgan, R.A., Effective targeting of multiple B-cell maturation antigen–expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells (2018) Human Gene Ther, 29, pp. 585-601. , COI: 1:CAS:528:DC%2BC1cXos1Gqurk%3D; Raje, N., Berdeja, J., Lin, Y., Siegel, D., Jagannath, S., Madduri, D., Liedtke, M., Turka, A., Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma (2019) N Engl J Med, 380, pp. 1726-1737. , COI: 1:CAS:528:DC%2BB3cXnsFGru74%3D, PID: 31042825; Shah, N., Alsina, M., Siegel, D.S., Jagannath, S., Madduri, D., Kaufman, J.L., Turka, A., Hege, K., Initial results from a phase 1 clinical study of bb21217, a next-generation anti Bcma CAR T therapy (2018) Blood, 132, p. 488; Zhao, W.-H., Liu, J., Wang, B.-Y., Chen, Y.-X., Cao, X.-M., Yang, Y., Zhang, Y.-L., Lei, B., A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma (2018) J Hematol Oncol, 11, pp. 1-8. , COI: 1:CAS:528:DC%2BC1MXjtVyqtrY%3D; Gregory, T., Cohen, A.D., Costello, C.L., Ali, S.A., Berdeja, J.G., Ostertag, E.M., Martin, C., Spear, M.A., Efficacy and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (2018) Blood, 132, p. 1012; Soulieres, D., Cohen, E., Le Tourneau, C., Dinis, J., Licitra, L., Ahn, M.J., Soria, A., Mehra, R., Abstract CT115: Updated survival results of the KEYNOTE-040 study of pembrolizumab vs standard-of-care chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma (2018) Cancer Res, 7; Mailankody, S., Ghosh, A., Staehr, M., Purdon, T.J., Roshal, M., Halton, E., Diamonte, C., Bernal, Y., Clinical responses and pharmacokinetics of MCARH171, a human-derived Bcma targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase I clinical trial (2018) Blood, 132, p. 959; Xu, J., Wang, Q., Xu, H., Gu, C., Jiang, L., Wang, J., Wang, D., Wang, J., Anti-BCMA CAR-T cells for treatment of plasma cell dyscrasia: case report on POEMS syndrome and multiple myeloma (2018) J Hematol Oncol, 11, pp. 1-9. , PID: 29298689, COI: 1:CAS:528:DC%2BC1MXjtVyqtrY%3D; Li, C., Zhou, X., Wang, J., Hu, G., Meng, L., Hong, Z., Chen, L., Zhou, J., Clinical responses and pharmacokinetics of fully human BCMA targeting CAR T cell therapy in relapsed/refractory multiple myeloma, clinical lymphoma (2019) Myeloma Leukemia, 19, pp. e23-e24; Wang, K., Wei, G., Liu, D., CD19: a biomarker for B cell development, lymphoma diagnosis and therapy (2012) Exp Hematol Oncol, 1, p. 36. , COI: 1:CAS:528:DC%2BC3sXksVKr, PID: 23210908; Franqui-Machin, R., Wendlandt, E.B., Janz, S., Zhan, F., Tricot, G., Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction? (2015) Oncotarget, 6, p. 40496. , PID: 26415231; Johnsen, H.E., Bøgsted, M., Schmitz, A., Bødker, J.S., El-Galaly, T.C., Johansen, P., Valent, P., Vanderkerken, K., The myeloma stem cell concept, revisited: from phenomenology to operational terms (2016) Haematologica, 101, pp. 1451-1459. , COI: 1:CAS:528:DC%2BC1cXhvVajsbY%3D, PID: 27903712; Koronyo, Y., Biggs, D., Barron, E., Boyer, D.S., Pearlman, J.A., Au, W.J., Kile, S.J., Ashfaq, A., Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease (2017) JCI insight, 2; Yan, L., Shang, J., Kang, L., Shi, X., Zhou, J., Jin, S., Yao, W., Zhu, Z., Combined infusion of CD19 and Bcma-specific chimeric antigen receptor T cells for RRMM: initial safety and efficacy report from a clinical pilot study (2017) Blood, 130, p. 506; Shi, X., Yan, L., Shang, J., Qu, S., Kang, L., Zhou, J., Jin, S., Yan, S., Tandom autologous transplantation and combined infusion of CD19 and Bcma-specific chimeric antigen receptor T cells for high risk MM: initial safety and efficacy report from a clinical pilot study (2018) Blood, 132, p. 1009; Yan, Z., Cao, J., Cheng, H., Qiao, J., Zhang, H., Wang, Y., Shi, M., Jin, L., A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial (2019) Lancet Haematol, 6, pp. e521-e529. , PID: 31378662; Matsui, W., Huff, C.A., Wang, Q., Malehorn, M.T., Barber, J., Tanhehco, Y., Smith, B.D., Jones, R.J., Characterization of clonogenic multiple myeloma cells (2004) Blood, 103, pp. 2332-2336. , COI: 1:CAS:528:DC%2BD2cXitlCjs74%3D, PID: 14630803; Hutchinson, A.T., Jones, D.R., Raison, R.L., Preclinical and clinical development of an anti-kappa free light chain mAb for multiple myeloma (2015) Mol Immunol, 67, pp. 89-94. , COI: 1:CAS:528:DC%2BC2MXns1Kgtbc%3D, PID: 25964097; Ramos, C.A., Savoldo, B., Torrano, V., Ballard, B., Zhang, H., Dakhova, O., Liu, E., Gee, A.P., Clinical responses with T lymphocytes targeting malignancy-associated κ light chains (2016) J Clin Investig, 126, pp. 2588-2596. , PID: 27270177; Patel, K., Olivares, S., Singh, H., Hurton, L.V., Huls, M.H., Qazilbash, M.H., Kebriaei, P., Cooper, L.J., Combination immunotherapy with NY-ESO-1-specific CAR+ T cells with T-cell vaccine improves anti-myeloma effect (2016) Blood, 128, p. 3366; Schuberth, P., Jakka, G., Jensen, S., Wadle, A., Gautschi, F., Haley, D., Haile, S., Thiel, M., Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma (2013) Gene Ther, 20, pp. 386-395. , COI: 1:CAS:528:DC%2BC38XpsVSrur4%3D, PID: 22739387; Rapoport, A.P., Stadtmauer, E.A., Binder-Scholl, G.K., Goloubeva, O., Vogl, D.T., Lacey, S.F., Badros, A.Z., Finklestein, J., NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma (2015) Nature Med, 21, p. 914. , COI: 1:CAS:528:DC%2BC2MXht1WltLnJ, PID: 26193344; Fernandez, J., Deaglio, S., Donati, D., Beusan, I.S., Corno, F., Aranega, A., Forni, M., Malavasi, F., Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues (1998) J Biol Regul Homeost Agents, 12, pp. 81-91. , COI: 1:CAS:528:DyaK1cXmvFGmtL0%3D, PID: 9795836; Drent, E., Groen, R.W., Noort, W.A., Themeli, M., van Bueren, J.J.L., Parren, P.W., Kuball, J., de Bruijn, J., Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma (2016) Haematologica, 101, pp. 616-625. , COI: 1:CAS:528:DC%2BC28Xhs1Squr7E, PID: 26858358; Lonial, S., Weiss, B.M., Usmani, S.Z., Singhal, S., Chari, A., Bahlis, N.J., Belch, A., Mateos, M.V., Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial (2016) Lancet, 387, pp. 1551-1560. , COI: 1:CAS:528:DC%2BC28XlvVGjsQ%3D%3D, PID: 26778538; Martin, T., Baz, R., Benson, D.M., Lendvai, N., Wolf, J., Munster, P., Lesokhin, A.M., Campana, F., A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma (2017) Blood, 129, pp. 3294-3303. , COI: 1:CAS:528:DC%2BC2sXhsVOmsr3L, PID: 28483761; Drent, E., Themeli, M., Poels, R., de Jong-Korlaar, R., Yuan, H., de Bruijn, J., Martens, A.C., Groen, R.W., A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization (2017) Mol Ther, 25, pp. 1946-1958. , COI: 1:CAS:528:DC%2BC2sXht1Oiur%2FJ, PID: 28506593; An, N., Hou, Y.N., Zhang, Q.X., Li, T., Zhang, Q.L., Fang, C., Chen, H., Du, X., Anti-multiple myeloma activity of nanobody-based anti-CD38 chimeric antigen receptor T cells (2018) Mol Pharm, 15, pp. 4577-4588. , COI: 1:CAS:528:DC%2BC1cXhs1Cht77J, PID: 30185037; García-Guerrero, E., Gogishvili, T., Danhof, S., Schreder, M., Pallaud, C., Pérez-Simón, J.A., Einsele, H., Hudecek, M., Panobinostat induces CD38 upregulation and augments the antimyeloma efficacy of daratumumab (2017) Blood, 129, pp. 3386-3388. , PID: 28476749, COI: 1:CAS:528:DC%2BC2sXhsVOmsrzL; Yoshida, T., Mihara, K., Takei, Y., Yanagihara, K., Kubo, T., Bhattacharyya, J., Imai, C., Ichinohe, T., All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia (2016) Clin Transl Immunol, 5. , COI: 1:CAS:528:DC%2BC1cXlsVSgtLw%3D; Liebisch, P., Eppinger, S., Schopflin, C., Stehle, G., Munzert, G., Dohner, H., Schmid, M., CD44v6, a target for novel antibody treatment approaches, is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q (2005) Haematologica, 90, pp. 489-493. , COI: 1:CAS:528:DC%2BD2MXksFGms7w%3D, PID: 15820944; Tijink, B.M., Buter, J., De Bree, R., Giaccone, G., Lang, M.S., Staab, A., Leemans, C.R., Van Dongen, G.A., A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus (2006) Clin Cancer Res, 12, pp. 6064-6072. , COI: 1:CAS:528:DC%2BD28XhtFWhsbnN, PID: 17062682; Casucci, M., Nicolis di Robilant, B., Falcone, L., Camisa, B., Norelli, M., Genovese, P., Gentner, B., Bernardi, M., CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma (2013) Blood, 122, pp. 3461-3472. , COI: 1:CAS:528:DC%2BC3sXhvVehsr7E, PID: 24016461; Carrabba, M.G., Casucci, M., Hudecek, M., Quintarelli, C., Briones, J., Hajek, R., Sierra, J., Bordignon, C., Phase I-IIa clinical trial to assess safety and efficacy of MLM-CAR44. 1, a CD44v6 directed CAR-T in relapsed/refractory acute myeloid leukemia (AML) and multiple myeloma (MM) (2018) Blood, 132, p. 5790; Van Camp, B., Durie, B., Spier, C., De Waele, M., Van Riet, I., Vela, E., Frutiger, Y., Grogan, T.M., (1990) Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19); Tassone, P., Gozzini, A., Goldmacher, V., Shammas, M.A., Whiteman, K.R., Carrasco, D.R., Li, C., Anderson, K.C., In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells (2004) Cancer Res, 64, pp. 4629-4636. , COI: 1:CAS:528:DC%2BD2cXltlOrtr4%3D, PID: 15231675; Ailawadhi, S., Kelly, K.R., Vescio, R.A., Jagannath, S., Wolf, J., Gharibo, M., Sher, T., Chanan-Khan, A., A phase I study to assess the safety and pharmacokinetics of single-agent lorvotuzumab mertansine (IMGN901) in patients with relapsed and/or refractory CD–56-positive multiple myeloma (2019) Clin Lymphoma Myeloma Leuk, 19, pp. 29-34. , PID: 30340993; Berdeja, J.G., Lorvotuzumab mertansine: antibody-drug-conjugate for CD56+ multiple myeloma (2014) Front Biosci (Landmark Ed), 19, pp. 163-170. , COI: 1:CAS:528:DC%2BC2cXhtl2ktLnO; Van Acker, H.H., Capsomidis, A., Smits, E.L., Van Tendeloo, V.F., CD56 in the immune system: more than a marker for cytotoxicity? (2017) Front Immunol, 8, p. 892. , PID: 28791027, COI: 1:CAS:528:DC%2BC1cXitVWnsrbK; Benjamin, R., Condomines, M., Gunset, G., Sadelain, M., CD56 targeted chimeric antigen receptors for immunotherapy of multiple myeloma (2012) Cancer Res, 72, p. 3499; McEarchern, J.A., Oflazoglu, E., Francisco, L., McDonagh, C.F., Gordon, K.A., Stone, I., Klussman, K., Carter, P., Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities (2007) Blood, 109, pp. 1185-1192. , COI: 1:CAS:528:DC%2BD2sXjtFertLg%3D, PID: 17038522; Owonikoko, T.K., Hussain, A., Stadler, W.M., Smith, D.C., Kluger, H., Molina, A.M., Gulati, P., Cardarelli, P.M., First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70 (2016) Cancer Chemother Pharmacol, 77, pp. 155-162. , COI: 1:CAS:528:DC%2BC2MXhvVyhsL%2FP, PID: 26576779; Tannir, N.M., Forero-Torres, A., Ramchandren, R., Pal, S.K., Ansell, S.M., Infante, J.R., De Vos, S., Whiting, N.C., Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma (2014) Investig New Drugs, 32, pp. 1246-1257. , COI: 1:CAS:528:DC%2BC2cXhsVCisLjK; Wang, Q.J., Yu, Z., Hanada, K.-I., Patel, K., Kleiner, D., Restifo, N.P., Yang, J.C., Preclinical evaluation of chimeric antigen receptors targeting CD70-expressing cancers (2017) Clin Cancer Res, 23, pp. 2267-2276. , COI: 1:CAS:528:DC%2BC2sXmvFegs70%3D, PID: 27803044; Ge, H., Mu, L., Jin, L., Yang, C., Chang, Y., Long, Y., DeLeon, G., Kubilis, P.S., Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM (2017) Int J Cancer, 141, pp. 1434-1444. , COI: 1:CAS:528:DC%2BC2sXhtFSmu7fF, PID: 28612394; Jin, L., Ge, H., Long, Y., Yang, C., Chang, Y., Mu, L., Sayour, E.J., Yang, J.C., CD70, a novel target of CAR T-cell therapy for gliomas (2018) Neuro-Oncol, 20, pp. 55-65. , COI: 1:CAS:528:DC%2BC1MXps1Ogtro%3D, PID: 28651374; Shaffer, D.R., Savoldo, B., Yi, Z., Chow, K.K., Kakarla, S., Spencer, D.M., Dotti, G., Kenney, S., T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies (2011) Blood, 117, pp. 4304-4314. , COI: 1:CAS:528:DC%2BC3MXls1Giurc%3D, PID: 21304103; Zheng, W., Liu, D., Fan, X., Powers, L., Goswami, M., Hu, Y., Lin, P., Wang, S.A., Potential therapeutic biomarkers in plasma cell myeloma: a flow cytometry study (2013) Cytometry Part B: Clin Cytometry, 84, pp. 222-228. , COI: 1:CAS:528:DC%2BC3sXhtVSiu7zM; Sanderson, R.D., Turnbull, J.E., Gallagher, J.T., Lander, A.D., Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior (1994) J Biol Chem, 269, pp. 13100-13106. , COI: 1:CAS:528:DyaK2cXjt1Shs78%3D, PID: 8175735; Wijdenes, J., Vooijs, W.C., Clément, C., Post, J., Morard, F., Vita, N., Laurent, P., Dore, J.M., A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1 (1996) Br J Haematol, 94, pp. 318-323. , COI: 1:CAS:528:DyaK28Xltlahtr4%3D, PID: 8759892; Moreaux, J., Sprynski, A.C., Dillon, S.R., Mahtouk, K., Jourdan, M., Ythier, A., Moine, P., Rossi, J.F., APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop (2009) Eur J Haematol, 83, pp. 119-129. , COI: 1:CAS:528:DC%2BD1MXpvFehs7Y%3D, PID: 19456850; Xu, D., Hu, J., Xu, S., De Bruyne, E., Menu, E., Van Camp, B., Vanderkerken, K., Van Valckenborgh, E., Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell proliferation (2012) Leukemia, 26, pp. 1402-1405. , COI: 1:CAS:528:DC%2BC38Xot1emtL8%3D, PID: 22094583; Kambham, N., Kong, C., Longacre, T.A., Natkunam, Y., Utility of syndecan-1 (CD138) expression in the diagnosis of undifferentiated malignant neoplasms: a tissue microarray study of 1,754 cases (2005) Appli Immunohistochem Mol Morphol, 13, pp. 304-310. , COI: 1:CAS:528:DC%2BD2MXhtleqsb7F; Kawano, Y., Fujiwara, S., Wada, N., Izaki, M., Yuki, H., Okuno, Y., Iyama, K., Mitsuya, H., Multiple myeloma cells expressing low levels of CD138 have an immature phenotype and reduced sensitivity to lenalidomide (2012) Int J Oncol, 41, pp. 876-884. , COI: 1:CAS:528:DC%2BC38XhtlWhurbI, PID: 22766978; Jagannath, S., Chanan-Khan, A., Heffner, L.T., Avigan, D., Zimmerman, T.M., Lonial, S., Lutz, R.J., Osterroth, F., BT062, an antibody-drug conjugate directed against CD138, shows clinical activity in patients with relapsed or relapsed/refractory multiple myeloma (2011) Blood, 118, p. 305; Kelly, K.R., Siegel, D.S., Chanan-Khan, A.A., Somlo, G., Heffner, L.T., Jagannath, S., Zimmerman, T., Mohrbacher, A., Indatuximab ravtansine (BT062) in combination with low-dose dexamethasone and lenalidomide or pomalidomide: clinical activity in patients with relapsed/refractory multiple myeloma (2016) Blood, 128, p. 4486; Jiang, H., Zhang, W., Shang, P., Zhang, H., Fu, W., Ye, F., Zeng, T., Sun, W., Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells (2014) Mol Oncol, 8, pp. 297-310. , COI: 1:CAS:528:DC%2BC2cXksFSgtw%3D%3D, PID: 24388357; Guo, B., Chen, M., Han, Q., Hui, F., Dai, H., Zhang, W., Zhang, Y., Han, W., CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma (2016) J Cell Immunother, 2, pp. 28-35; Sun, C., Mahendravada, A., Ballard, B., Kale, B., Ramos, C., West, J., Maguire, T., Tuchman, S., Safety and efficacy of targeting CD138 with a chimeric antigen receptor for the treatment of multiple myeloma (2019) Oncotarget, 10, p. 2369. , PID: 31040928; Ramani, V.C., Sanderson, R.D., Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect of treatment that may promote tumor relapse (2014) Matrix Biol, 35, pp. 215-222. , COI: 1:CAS:528:DC%2BC3sXhsl2ms7jK, PID: 24145151; Cannons, J.L., Tangye, S.G., Schwartzberg, P.L., SLAM family receptors and SAP adaptors in immunity (2011) Ann Rev Immunol, 29, pp. 665-705. , COI: 1:CAS:528:DC%2BC3MXltlKnsLk%3D; Malaer, J.D., Mathew, P.A., CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma (2017) Am J Cancer Res, 7, p. 1637. , COI: 1:CAS:528:DC%2BC1cXit1CksL3O, PID: 28861320; Chen, J., Zhong, M.-C., Guo, H., Davidson, D., Mishel, S., Lu, Y., Rhee, I., Cruz-Munoz, M.-E., SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin (2017) Nature, 544, pp. 493-497. , COI: 1:CAS:528:DC%2BC2sXmtlaltL4%3D, PID: 28424516; Gogishvili, T., Danhof, S., Prommersberger, S., Rydzek, J., Schreder, M., Brede, C., Einsele, H., Hudecek, M., SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes (2017) Blood, 130, pp. 2838-2847. , COI: 1:CAS:528:DC%2BC1cXhs1eru73E, PID: 29089311; Hsi, E.D., Steinle, R., Balasa, B., Szmania, S., Draksharapu, A., Shum, B.P., Huseni, M., Zhang, Y., CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma (2008) Clin Cancer Res, 14, pp. 2775-2784. , COI: 1:CAS:528:DC%2BD1cXlsV2qu7w%3D, PID: 18451245; Veillette, A., Guo, H., CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma (2013) Crit Rev Oncol Hematol, 88, pp. 168-177. , PID: 23731618; De Salort, J., Sintes, J., Llinàs, L., Matesanz-Isabel, J., Engel, P., Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells (2011) Immunol Lett, 134, pp. 129-136. , PID: 20933013, COI: 1:CAS:528:DC%2BC3cXhs1ajsLfN; Friend, R., Bhutani, M., Voorhees, P.M., Usmani, S.Z., Clinical potential of SLAMF7 antibodies–focus on elotuzumab in multiple myeloma (2017) Drug Design Dev Ther, 11, p. 893. , COI: 1:CAS:528:DC%2BC1cXhsVOgs7bE; Galetto, R., Chion-Sotinel, I., Gouble, A., Smith, J., Bypassing the constraint for chimeric antigen receptor (CAR) development in T-cells expressing the targeted antigen: improvement of anti-CS1 CAR activity in allogenic TCRa/CS1 double knockout T-cells for the treatment of multiple myeloma (MM) (2015) Blood, 126, p. 116; Tokarew, N., Ogonek, J., Endres, S., von Bergwelt-Baildon, M., Kobold, S., Teaching an old dog new tricks: next-generation CAR T cells (2019) Br J Cancer, 120, pp. 26-37. , COI: 1:CAS:528:DC%2BC1cXitFOjt7fL, PID: 30413825; Mathur, R., Zhang, Z., He, J., Galetto, R., Gouble, A., Chion-Sotinel, I., Filipe, S., Manasanch, E.E., Universal SLAMF7-specific CAR T-cells as treatment for multiple myeloma (2017) Blood, 130, p. 502; Wang, X., Walter, M., Urak, R., Weng, L., Huynh, C., Lim, L., Wong, C.W., Sanchez, J.F., Lenalidomide enhances the function of CS1 chimeric antigen receptor–redirected T cells against multiple myeloma (2018) Clin Cancer Res, 24, pp. 106-119. , COI: 1:CAS:528:DC%2BC1cXhvVWktg%3D%3D, PID: 29061640; Peinert, S., Prince, H., Guru, P., Kershaw, M., Smyth, M., Trapani, J., Gambell, P., Smyth, F., Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen (2010) Gene Ther, 17, pp. 678-686. , COI: 1:CAS:528:DC%2BC3cXislOmtr4%3D, PID: 20200563; Westwood, J.A., Smyth, M.J., Teng, M.W., Moeller, M., Trapani, J.A., Scott, A.M., Smyth, F.E., Hönemann, D., Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice (2005) Proc Natl Acad Sci, 102, pp. 19051-19056. , COI: 1:CAS:528:DC%2BD28XivV2hsA%3D%3D, PID: 16365285; Lanier, L., NKG2D receptor and its ligands in host defense (2015) Cancer Immunol Res, 3, pp. 575-582. , COI: 1:CAS:528:DC%2BC2MXps1Chtbg%3D, PID: 26041808; Nausch, N., Cerwenka, A., NKG2D ligands in tumor immunity (2008) Oncogene, 27, pp. 5944-5958. , COI: 1:CAS:528:DC%2BD1cXhtF2msbbN, PID: 18836475; Zingoni, A., Cecere, F., Vulpis, E., Fionda, C., Molfetta, R., Soriani, A., Petrucci, M.T., Amendola, M.G., Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells (2015) J Immunol, 195, pp. 736-748. , COI: 1:CAS:528:DC%2BC2MXhtFSms7vM, PID: 26071561; Leivas, A., Rio, P., Mateos, R., Paciello, M.L., Garcia-Ortiz, A., Fernandez, L., Perez-Martinez, A., Valeri, A., NKG2D-CAR transduced primary natural killer cells efficiently target multiple myeloma cells (2018) Blood, 132, p. 590; Baumeister, S.H., Murad, J., Werner, L., Daley, H., Trebeden-Negre, H., Gicobi, J.K., Schmucker, A., Gilham, D.E., Phase 1 trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma (2019) Cancer Immunol Res, 7, pp. 100-112; Borrello, I., Imus, P.H., BCMA CAR T cells: the winding path to success (2019) J Clin Investig, 129; Cohen, A.D., Garfall, A.L., Stadtmauer, E.A., Melenhorst, J.J., Lacey, S.F., Lancaster, E., Vogl, D.T., Nelson, A., B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma (2019) J Clin Investig, 129, pp. 2210-2221; Lee, L., Draper, B., Chaplin, N., Philip, B., Chin, M., Galas-Filipowicz, D., Onuoha, S., Bughda, R., An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma (2018) J am Soc Hematol, 131, pp. 746-758. , Blood; Maus, M.V., Haas, A.R., Beatty, G.L., Albelda, S.M., Levine, B.L., Liu, X., Zhao, Y., June, C.H., T cells expressing chimeric antigen receptors can cause anaphylaxis in humans (2013) Cancer Immunol Res, 1, pp. 26-31. , COI: 1:CAS:528:DC%2BC2cXmtFSjtLo%3D, PID: 24777247; Schmidts, A., Ormhoj, M., Taylor, A.O., Lorrey, S.J., Scarfò, I., Frigault, M.J., Choi, B.D., Maus, M.V., Engineering an optimized trimeric APRIL-based CAR to broaden targetability of multiple myeloma (2018) Blood, 132, p. 2059; Tai, Y.-T., Lin, L., Xing, L., Cho, S.-F., Yu, T., Acharya, C., Wen, K., van Elsas, A., APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications (2019) Leukemia, 33, pp. 426-438. , COI: 1:CAS:528:DC%2BC1cXhsFOjsrnM, PID: 30135465; Venkateshaiah, S.U., Bam, R., Li, X., Khan, S., Ling, W., Randal, S., Yaccoby, S., GPRC5D Is a cell surface plasma cell marker whose expression is high in myeloma cells and reduced following coculture with osteoclasts (2013) Blood, 122, p. 3099; Cohen, Y., Gutwein, O., Garach-Jehoshua, O., Bar-Haim, A., Kornberg, A., GPRC5D is a promising marker for monitoring the tumor load and to target multiple myeloma cells (2013) Hematology, 18, pp. 348-351. , PID: 23510526, COI: 1:CAS:528:DC%2BC3sXhs1Cls7jL; Smith, E.L., Harrington, K., Staehr, M., Masakayan, R., Jones, J., Long, T., Ghoddusi, M., Wang, X., CAR T cell therapy targeting G protein-coupled receptor class C group 5 member D (GPRC5D), a novel target for the immunotherapy of multiple myeloma (2018) Blood, 132, p. 10.1182; Frigyesi, I., Adolfsson, J., Ali, M., Kronborg Christophersen, M., Johnsson, E., Turesson, I., Gullberg, U., Nilsson, B., Robust isolation of malignant plasma cells in multiple myeloma (2014) Blood, 123, pp. 1336-1340. , COI: 1:CAS:528:DC%2BC2cXkt1ajurg%3D, PID: 24385542; Smith, E.L., Harrington, K., Staehr, M., Masakayan, R., Jones, J., Long, T.J., Ng, K.Y., Wang, X., GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells (2019) Sci Transl Med, 11, p. eaau7746. , PID: 30918115, COI: 1:CAS:528:DC%2BC1MXhtlemt7%2FL; Hosen, N., Matsunaga, Y., Hasegawa, K., Matsuno, H., Nakamura, Y., Makita, M., Watanabe, K., Morimoto, S., The activated conformation of integrin β 7 is a novel multiple myeloma–specific target for CAR T cell therapy (2017) Nat Med, 23, p. 1436. , COI: 1:CAS:528:DC%2BC2sXhslKmurrE, PID: 29106400; Spanoudakis, E., Hu, M., Naresh, K., Terpos, E., Melo, V., Reid, A., Kotsianidis, I., Karadimitris, A., Regulation of multiple myeloma survival and progression by CD1d (2009) Blood, 113, pp. 2498-2507. , COI: 1:CAS:528:DC%2BD1MXjsFKhu7Y%3D, PID: 19056691; Rotolo, A., Caputo, V.S., Holubova, M., Baxan, N., Dubois, O., Chaudhry, M.S., Xiao, X., Petevi, K., Enhanced anti-lymphoma activity of CAR19-iNKT cells underpinned by dual CD19 and CD1d targeting (2018) Cancer Cell, 34, pp. 596-610. e511. , COI: 1:CAS:528:DC%2BC1cXhvVOgsr%2FM, PID: 30300581; Muccio, V.E., Saraci, E., Gilestro, M., Gattei, V., Zucchetto, A., Astolfi, M., Ruggeri, M., Palumbo, A., Multiple myeloma: new surface antigens for the characterization of plasma cells in the era of novel agents (2016) Cytometry Part B: Clin Cytometry, 90, pp. 81-90. , COI: 1:CAS:528:DC%2BC28XlslWitrY%3D; Olson, M., Radhakrishnan, S.V., Luetkens, T., Atanackovic, D., The role of surface molecule CD229 in multiple myeloma (2019) Clin Immunol, 204, pp. 69-73. , COI: 1:CAS:528:DC%2BC1cXitVChsb7I, PID: 30326256; Yousef, S., Kovacsovics-Bankowski, M., Salama, M.E., Bhardwaj, N., Steinbach, M., Langemo, A., Kovacsovics, T., Panse, J., CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma (2015) Hum Vaccines Immunother, 11, pp. 1606-1611; Venniyil Radhakrishnan, S., Luetkens, T., Yousef, S., Bhardwaj, N., Steinbach, M.N., Weidner, J., Shorter, C., Atanackovic, D., Chimeric antigen receptor (CAR) T cells specific for CD229: a potentially curative approach for multiple myeloma (2017) Blood, 130, p. 3142; Gardner, R., Finney, O., Smithers, H., Leger, K.J., Annesley, C.A., Summers, C., Brown, C., Spratt, K., CD19CAR T cell products of defined CD4: CD8 composition and transgene expression show prolonged persistence and durable MRD-negative remission in pediatric and young adult B-cell ALL (2016) Blood, 128, p. 219; Maude, S.L., Teachey, D.T., Rheingold, S.R., Shaw, P.A., Aplenc, R., Barrett, D.M., Barker, C.S., Nazimuddin, F., Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL (2016) J Clin Oncol, 34, p. 3011; Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P.G., Anderson, K.C., Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets (2007) Nat Rev Cancer, 7, pp. 585-598. , COI: 1:CAS:528:DC%2BD2sXotVKqsrw%3D, PID: 17646864; Cazaux, M., Grandjean, C.L., Lemaître, F., Garcia, Z., Beck, R.J., Milo, I., Postat, J., Bousso, P., Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity (2019) J Exp Med, 216, pp. 1038-1049. , COI: 1:CAS:528:DC%2BC1MXhtFGgs7zK, PID: 30936262; Brimnes, M.K., Vangsted, A.J., Knudsen, L.M., Gimsing, P., Gang, A., Johnsen, H.E., Svane, I., Increased level of both CD4+ FOXP3+ regulatory T cells and CD14+ HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma (2010) Scand J Immunol, 72, pp. 540-547. , COI: 1:CAS:528:DC%2BC3cXhsFyqurzP, PID: 21044128; Feyler, S., Von Lilienfeld-Toal, M., Jarmin, S., Marles, L., Rawstron, A., Ashcroft, A., Owen, R.G., Cook, G., CD4+ CD25+ FoxP3+ regulatory T cells are increased whilst CD3+ CD4− CD8− αβTCR+ double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden (2009) Bri J Haematol, 144, pp. 686-695; Majka, M., Janowska-Wieczorek, A., Ratajczak, J., Ehrenman, K., Pietrzkowski, Z., Kowalska, M.A., Gewirtz, A.M., Ratajczak, M.Z., Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner: Presented at the 41st Annual Meeting of the American Society of Hematology, New Orleans, LA, December 3–7, 1999, and published in abstract form in Blood. 1999; 94 (suppl 1): 465a, Blood (2001) The Journal of the American Society of Hematology, 97, pp. 3075-3085; Paul, B., Kang, S., Zheng, Z., Kang, Y., The challenges of checkpoint inhibition in the treatment of multiple myeloma (2018) Cell Immunol, 334, pp. 87-98. , COI: 1:CAS:528:DC%2BC1cXhvFCjsrnL, PID: 30342750; Porter, D.L., Hwang, W.-T., Frey, N.V., Lacey, S.F., Shaw, P.A., Loren, A.W., Bagg, A., Gonzalez, V., Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia (2015) Sci Transl Med, 7, p. 303ra139. , PID: 26333935; Davila, M.L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S.S., Olszewska, M., Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia (2014) Sci Transl Med, 6, p. 224ra225. , COI: 1:CAS:528:DC%2BC2cXht1Knt7jE; Binsfeld, M., Muller, J., Lamour, V., De Veirman, K., De Raeve, H., Bellahcène, A., Van Valckenborgh, E., Caers, J., Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma (2016) Oncotarget, 7, p. 37931. , PID: 27177328; Görgün, G.T., Whitehill, G., Anderson, J.L., Hideshima, T., Maguire, C., Laubach, J., Raje, N., Anderson, K.C., Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans (2013) Blood, 121, pp. 2975-2987. , PID: 23321256, COI: 1:CAS:528:DC%2BC3sXmsFehtLs%3D; Parihar, R., Rivas, C., Huynh, M., Omer, B., Lapteva, N., Metelitsa, L.S., Gottschalk, S.M., Rooney, C.M., NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors (2019) Cancer Immunol Res, 7, pp. 363-375; Helsen, C.W., Hammill, J.A., Lau, V.W., Mwawasi, K.A., Afsahi, A., Bezverbnaya, K., Newhook, L., Bojovic, B., The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity (2018) Nat Commun, 9, pp. 1-13. , COI: 1:CAS:528:DC%2BC1cXhsVGjtr%2FF; Lamers, C.H., Sleijfer, S., Vulto, A.G., Kruit, W.H., Kliffen, M., Debets, R., Gratama, J.W., Oosterwijk, E., Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience (2006) J Clin Oncol, 24, pp. e20-e22; Morgan, R.A., Yang, J.C., Kitano, M., Dudley, M.E., Laurencot, C.M., Rosenberg, S.A., Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2 (2010) Mol Ther, 18, pp. 843-851. , COI: 1:CAS:528:DC%2BC3cXitlaitb4%3D, PID: 20179677; Gargett, T., Brown, M.P., The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells (2014) Front Pharmacol, 5, p. 235. , PID: 25389405, COI: 1:CAS:528:DC%2BC2MXht12iu7nN; Chen, Y.Y., Jensen, M.C., Smolke, C.D., Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems (2010) Proc Natl Acad Sci, 107, pp. 8531-8536. , COI: 1:CAS:528:DC%2BC3cXmsVOrsLc%3D, PID: 20421500; Wei, P., Wong, W.W., Park, J.S., Corcoran, E.E., Peisajovich, S.G., Onuffer, J.J., Weiss, A., Lim, W.A., Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells (2012) Nature, 488, pp. 384-388. , COI: 1:CAS:528:DC%2BC38XhtFWjtbjE, PID: 22820255; Vogler, I., Newrzela, S., Hartmann, S., Schneider, N., Von Laer, D., Koehl, U., Grez, M., An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy (2010) Mol Ther, 18, pp. 1330-1338. , COI: 1:CAS:528:DC%2BC3cXlvVelurk%3D, PID: 20461062; Wang, X., Chang, W.-C., Wong, C.W., Colcher, D., Sherman, M., Ostberg, J.R., Forman, S.J., Jensen, M.C., A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells (2011) Blood, 118, pp. 1255-1263. , COI: 1:CAS:528:DC%2BC3MXhtVCnurjN, PID: 21653320; Wu, C.-Y., Roybal, K.T., Puchner, E.M., Onuffer, J., Lim, W.A., Remote control of therapeutic T cells through a small molecule–gated chimeric receptor (2015) Science, 350, p. aab4077. , PID: 26405231, COI: 1:CAS:528:DC%2BC2MXhs1ChsLrO; Fedorov, V.D., Themeli, M., Sadelain, M., PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses (2013) Sci Transl Med, 5, p. 215ra172. , PID: 24337479, COI: 1:CAS:528:DC%2BC2cXmvFKnsr8%3D; Grigor, E.J.M., Fergusson, D., Kekre, N., Montroy, J., Atkins, H., Seftel, M.D., Daugaard, M., Lalu, M.M., Risks and benefits of chimeric antigen receptor T-cell (CAR-T) therapy in cancer: a systematic review and meta-analysis (2019) Transfusion Med Rev, 33, pp. 98-110; Grada, Z., Hegde, M., Byrd, T., Shaffer, D.R., Ghazi, A., Brawley, V.S., Corder, A., Dotti, G., TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy (2013) Mol Ther -Nucleic Acids, 2. , PID: 23839099, COI: 1:CAS:528:DC%2BC3sXht1elsb3I; Kloss, C.C., Condomines, M., Cartellieri, M., Bachmann, M., Sadelain, M., Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells (2013) Nat Biotechnol, 31, p. 71. , COI: 1:CAS:528:DC%2BC38XhvVersr%2FM, PID: 23242161; Lanitis, E., Poussin, M., Klattenhoff, A.W., Song, D., Sandaltzopoulos, R., June, C.H., Powell, D.J., Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo (2013) Cancer Immunol Res, 1, pp. 43-53. , COI: 1:CAS:528:DC%2BC2cXmtFSjtLY%3D, PID: 24409448; Wilkie, S., van Schalkwyk, M.C., Hobbs, S., Davies, D.M., van der Stegen, S.J., Pereira, A.C.P., Burbridge, S.E., Maher, J., Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling (2012) J Clin Immunol, 32, pp. 1059-1070. , COI: 1:CAS:528:DC%2BC38XhtlOlurjL, PID: 22526592; Sommer, C., Boldajipour, B., Kuo, T.C., Bentley, T., Sutton, J., Chen, A., Geng, T., Valton, J., Preclinical evaluation of allogeneic CAR T cells targeting BCMA for the treatment of multiple myeloma (2019) Mol Ther, 27, pp. 1126-1138. , COI: 1:CAS:528:DC%2BC1MXhtFensbbJ, PID: 31005597

Indexed by Scopus

Leave a Comment