An affinity-matured human monoclonal antibody targeting fusion loop epitope of dengue virus with in vivo therapeutic potency

Kotaki T., Kurosu T., Grinyo-Escuer A., Davidson E., Churrotin S., Okabayashi T., Puiprom O., Mulyatno K.C., Sucipto T.H., Doranz B.J., Ono K.-I., Soegijanto S., Kameoka M.

Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan; Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia; Department of Virology I, National Institute of Infectious Diseases (NIID), Tokyo, Japan; Integral Molecular, Inc., Philadelphia, PA, United States; Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Medical & Biological Laboratories Co., Ltd., Tokyo, Japan; Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan


Dengue virus (DENV), from the genus flavivirus of the family flaviviridae, causes serious health problems globally. Human monoclonal antibodies (HuMAb) can be used to elucidate the mechanisms of neutralization and antibody-dependent enhancement (ADE) of DENV infections, leading to the development of a vaccine or therapeutic antibodies. Here, we generated eight HuMAb clones from an Indonesian patient infected with DENV. These HuMAbs exhibited the typical characteristics of weak neutralizing antibodies including high cross-reactivity with other flaviviruses and targeting of the fusion loop epitope (FLE). However, one of the HuMAbs, 3G9, exhibited strong neutralization (NT50 < 0.1 μg/ml) and possessed a high somatic hyper-mutation rate of the variable region, indicating affinity-maturation. Administration of this antibody significantly prolonged the survival of interferon-α/β/γ receptor knockout C57BL/6 mice after a lethal DENV challenge. Additionally, Fc-modified 3G9 that had lost their in vitro ADE activity showed enhanced therapeutic potency in vivo and competed strongly with an ADE-prone antibody in vitro. Taken together, the affinity-matured FLE-targeting antibody 3G9 exhibits promising features for therapeutic application including a low NT50 value, potential for treatment of various kinds of mosquito-borne flavivirus infection, and suppression of ADE. This study demonstrates the therapeutic potency of affinity-matured FLE-targeting antibodies. © 2021, The Author(s).


Scientific Reports

Publisher: Nature Research

Volume 11, Issue 1, Art No 12987, Page – , Page Count

Journal Link:

doi: 10.1038/s41598-021-92403-9

Issn: 20452322

Type: All Open Access, Gold, Green


Pierson, T.C., Diamond, M.S., The continued threat of emerging flaviviruses (2020) Nat. Microbiol., 5, pp. 796-812. , COI: 1:CAS:528:DC%2BB3cXosVyqu7Y%3D, PID: 32367055; Halstead, S.B., Dengue (2007) Lancet, 370, pp. 1644-1652. , PID: 17993365; (2012) Handbook for Clinical Management of Dengue, ,; Bhatt, S., The global distribution and burden of dengue (2013) Nature, 496, pp. 504-507. , COI: 1:CAS:528:DC%2BC3sXltlOnsLs%3D, PID: 23563266; Thomas, S.J., Endy, T.P., Current issues in dengue vaccination (2013) Curr. Opin. Infect. Dis., 26, pp. 429-434. , COI: 1:CAS:528:DC%2BC3sXhtlGrtrfF, PID: 23963259; Halstead, S.B., O’Rourke, E.J., Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody (1977) J. Exp. Med., 146, pp. 201-217. , COI: 1:STN:280:DyaE2s3gvVynsw%3D%3D, PID: 406347; Vaughn, D.W., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity (2000) J. Infect. Dis., 181, pp. 2-9. , COI: 1:STN:280:DC%2BD3c%2Fos12qsw%3D%3D, PID: 10608744; Hadinegoro, S.R., Efficacy and long-term safety of a dengue vaccine in regions of endemic disease (2015) N. Engl. J. Med., 373, pp. 1195-1206. , COI: 1:CAS:528:DC%2BC28XkslCjuw%3D%3D, PID: 26214039; Aguiar, M., Stollenwerk, N., Halstead, S.B., The impact of the newly licensed dengue vaccine in endemic countries (2016) PLOS Negl. Trop. Dis., 10. , PID: 28002420; Castanha, P., Dengue virus-specific antibodies enhance Brazilian Zika virus infection (2017) J. Infect. Dis., 215, pp. 781-785. , COI: 1:CAS:528:DC%2BC1cXitFCru7rE, PID: 28039355; Kawiecki, A.B., Christofferson, R.C., Zika virus–induced antibody response enhances dengue virus Serotype 2 replication in vitro (2016) J. Infect. Dis., 214, pp. 1357-1360. , COI: 1:CAS:528:DC%2BC1cXktFCgt78%3D, PID: 27521359; Junjhon, J., Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles (2010) J. Virol., 84, pp. 8353-8358. , COI: 1:CAS:528:DC%2BC3cXhtVOmsb7E, PID: 20519400; Pierson, T.C., Diamond, M.S., Degrees of maturity: The complex structure and biology of flaviviruses (2012) Curr. Opin. Virol., 2, pp. 168-175. , COI: 1:CAS:528:DC%2BC38Xltl2rsLo%3D, PID: 22445964; Kuhn, R.J., Dowd, K.A., Beth Post, C., Pierson, T.C., Shake, rattle, and roll: Impact of the dynamics of Flavivirus particles on their interactions with the host (2015) Virology, 479-480, pp. 508-517. , PID: 25835729, COI: 1:CAS:528:DC%2BC2MXkvVSrtro%3D; Dowd, K.A., DeMaso, C.R., Pierson, T.C., Genotypic differences in dengue virus neutralization are explained by a single amino acid mutation that modulates virus breathing (2015) MBio, 6, pp. e01559-e11515. , COI: 1:CAS:528:DC%2BC28XitFSiu7nI, PID: 26530385; Tsai, W.Y., Potent neutralizing human monoclonal antibodies preferentially target mature dengue virus particles: Implication for novel strategy for dengue vaccine (2018) J. Virol., 92, pp. e00556-e618. , COI: 1:CAS:528:DC%2BC1MXntFSit7c%3D, PID: 30185598; Roehrig, J.T., Antigenic structure of Flavivirus proteins (2003) Adv. Virus Res., 59, pp. 141-175. , COI: 1:CAS:528:DC%2BD2cXptFClsQ%3D%3D, PID: 14696329; Modis, Y., Ogata, S., Clements, D., Harrison, S.C., A ligand-binding pocket in the dengue virus envelope glycoprotein (2003) Proc. Natl Acad. Sci. U. S. A., 100, pp. 6986-6991. , COI: 1:CAS:528:DC%2BD3sXkslOntLg%3D, PID: 12759475; Kuhn, R.J., Structure of dengue virus: Implications for Flavivirus organization, maturation, and fusion (2002) Cell, 108, pp. 717-725. , COI: 1:CAS:528:DC%2BD38XisFOhtLk%3D, PID: 11893341; Yamanaka, A., Kotaki, T., Konishi, E., A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity (2013) J. Virol., 87, pp. 12828-12837. , COI: 1:CAS:528:DC%2BC3sXhvVygsrfN, PID: 24049185; Nelson, S., Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization (2008) PLoS Pathog., 4. , PID: 18464894, COI: 1:CAS:528:DC%2BD1cXnsVOlsro%3D; Pierson, T.C., The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection (2007) Cell Host Microbe, 1, pp. 135-145. , COI: 1:CAS:528:DC%2BD2sXlsVWmtrw%3D, PID: 18005691; Crill, W.D., Chang, G.J., Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes (2004) J. Virol., 78, pp. 13975-13986. , COI: 1:CAS:528:DC%2BD2cXhtFSisL3O, PID: 15564505; Crill, W.D., Trainor, N.B., Chang, G.J., A detailed mutagenesis study of flavivirus cross-reactive epitopes using West Nile virus-like particles (2007) J. Gen. Virol., 88, pp. 1169-1174. , COI: 1:CAS:528:DC%2BD2sXktFGht7g%3D, PID: 17374760; Trainor, N.B., Crill, W.D., Roberson, J.A., Chang, G.J., Mutation analysis of the fusion domain region of St Louis encephalitis virus envelope protein (2007) Virology, 360, pp. 398-406. , COI: 1:CAS:528:DC%2BD2sXjs1Ojt7s%3D, PID: 17157348; Oliphant, T., Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein (2006) J. Virol., 80, pp. 12149-12159. , COI: 1:CAS:528:DC%2BD28XhtlWksb7M, PID: 17035317; Thompson, B.S., A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes (2009) PLoS Pathog., 5. , PID: 19478866, COI: 1:CAS:528:DC%2BD1MXmvFGku70%3D; Vogt, M.R., Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fc-{gamma} receptor and complement-dependent effector mechanisms (2011) J. Virol., 22, pp. 11567-11580. , COI: 1:CAS:528:DC%2BC3MXhsVansLnM; Lin, H.E., Analysis of epitopes on dengue virus envelope protein recognized by monoclonal antibodies and polyclonal human sera by a high throughput assay (2012) PLOS Negl. Trop. Dis., 6. , COI: 1:CAS:528:DC%2BC38XptFOhsA%3D%3D, PID: 22235356; Lai, C.Y., Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II (2008) J. Virol., 82, pp. 6631-6643. , COI: 1:CAS:528:DC%2BD1cXnslyqsbs%3D, PID: 18448542; Teoh, E.P., The structural basis for serotype-specific neutralization of dengue virus by a human antibody (2012) Sci. Transl. Med., 4, p. 139ra83. , PID: 22723463, COI: 1:CAS:528:DC%2BC38XhtVent7nP; de Alwis, R., Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions (2012) Proc. Natl Acad. Sci. U. S. A., 109, pp. 7439-7444. , PID: 22499787; Dejnirattisai, W., A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus (2015) Nat. Immunol., 16, pp. 170-177. , COI: 1:CAS:528:DC%2BC2cXitFKltL7E, PID: 25501631; de Alwis, R., In-depth analysisof the antibody response of individuals exposed to primary dengue virus infection (2011) PLOS Negl. Trop. Dis., 5. , PID: 21713020; Wahala, W.M.P.B., Kraus, A.A., Haymore, L.B., Accavitti-Loper, M.A., de Silva, A.M., Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody (2009) Virology, 392, pp. 103-113. , COI: 1:CAS:528:DC%2BD1MXhtVOis7jL, PID: 19631955; Smith, S.A., The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein (2013) MBio, 4, pp. e00873-e1813. , PID: 24255124; Kubota-Koketsu, R., Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors (2009) Biochem. Biophys. Res. Commun., 387, pp. 180-185. , COI: 1:CAS:528:DC%2BD1MXptValtro%3D, PID: 19580789; Setthapramote, C., Human monoclonal antibodies to neutralize all dengue virus serotypes using lymphocytes from patients at acute phase of the secondary infection (2012) Biochem. Biophys. Res. Commun., 423, pp. 867-872. , COI: 1:CAS:528:DC%2BC38XpvVOksLc%3D, PID: 22713454; Lanciotti, R.S., Calisher, C.H., Gubler, D.J., Chang, G.J., Vorndam, A.V., Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction (1992) J. Clin. Microbiol., 30, pp. 545-551. , COI: 1:CAS:528:DyaK38XhsVyis7g%3D, PID: 1372617; Yamanaka, A., Suzuki, R., Konishi, E., Evaluation of single-round infectious, chimeric dengue type 1 virus as an antigen for dengue functional antibody assays (2014) Vaccine, 32, pp. 4289-4295. , COI: 1:CAS:528:DC%2BC2cXhtVyls7jK, PID: 24950360; Yamanaka, A., Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses (2017) J. Virol. Methods, 243, pp. 164-171. , COI: 1:CAS:528:DC%2BC2sXkt1Ogurk%3D, PID: 28219763; Pierson, T.C., Fremont, D.H., Kuhn, R.J., Diamond, M.S., Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: Implications for vaccine development (2008) Cell Host Microbe., 4, pp. 229-238. , COI: 1:CAS:528:DC%2BD1cXhtF2jt7jN, PID: 18779049; Hung, S.L., Analysis of the steps involved in dengue virus entry into host cells (1999) Virology, 257, pp. 156-167. , COI: 1:CAS:528:DyaK1MXisVahsLw%3D, PID: 10208929; Davidson, E., Doranz, B.J., A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes (2014) Immunology, 143, pp. 13-20. , COI: 1:CAS:528:DC%2BC2cXht1ahtrvO, PID: 24854488; Costin, J.M., Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop (2013) J. Virol., 87, pp. 52-66. , COI: 1:CAS:528:DC%2BC3sXltVyqu7g%3D, PID: 23077306; Konishi, E., Tabuchi, Y., Yamanaka, A., A simple assay system for infection-enhancing and -neutralizing antibodies to dengue type 2 virus using layers of semi-adherent K562 cells (2010) J. Virol. Methods, 163, pp. 360-367. , COI: 1:CAS:528:DC%2BC3cXjtleltA%3D%3D, PID: 19883692; Saunders, K.O., Conceptual approaches to modulating antibody effector functions and circulation half-life (2019) Front. Immunol., 10, p. 1296. , COI: 1:CAS:528:DC%2BB3cXhsV2ksL4%3D, PID: 31231397; Fibriansah, G., Cryo-em structure of an antibody that neutralizes dengue virus type 2 by locking e protein dimers (2015) Science, 349, pp. 88-91. , COI: 1:CAS:528:DC%2BC2MXhtVOktLvK, PID: 26138979; Ramadhany, R., Antibody with an engineered Fc region as a therapeutic agent against dengue virus infection (2015) Antivir. Res., 124, pp. 61-68. , COI: 1:CAS:528:DC%2BC2MXhvVehtL%2FM, PID: 26522769; Xu, M., A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus (2017) NPJ Vaccines, 2, p. 2; Hu, D., A broadly neutralizing germline-like human monoclonal antibody against dengue virus envelope domain III (2019) PLOS Pathog., 15. , COI: 1:CAS:528:DC%2BC1MXhvFGksL7K, PID: 31242272; Balsitis, S.J., Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification (2010) PLOS Pathog., 6. , PID: 20168989, COI: 1:CAS:528:DC%2BC3cXitFWntLs%3D; Goncalvez, A.P., Engle, R.E., St Claire, M., Purcell, R.H., Lai, C.J., Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention (2007) Proc. Natl Acad. Sci. U. S. A., 104, pp. 9422-9427. , COI: 1:CAS:528:DC%2BD2sXmtlegtb0%3D, PID: 17517625; Hessell, A.J., Fc receptor but not complement binding is important in antibody protection against HIV (2007) Nature, 449, pp. 101-104. , COI: 1:CAS:528:DC%2BD2sXpvFWrs7s%3D, PID: 17805298; Shields, R.L., High resolution mapping of the binding site on human IgG1 for Fc Gamma RI, Fc Gamma RII, Fc Gamma RIII, and FcRn and Design of IgG1 variants with improved binding to the Fc Gamma R (2001) J. Biol. Chem., 276, pp. 6591-6604. , COI: 1:CAS:528:DC%2BD3MXhslShurs%3D, PID: 11096108; Phanthanawiboon, S., Acute systemic infection with dengue virus leads to vascular leakage and death through tumor necrosis factor-α and Tie2/angiopoietin signaling in mice lacking type I and II interferon receptors (2016) PLoS ONE, 11. , PID: 26844767, COI: 1:CAS:528:DC%2BC28XhsVGnurvP; Zheng, Z., Li, M., Liu, Z., Jin, X., Sun, J., Establishment of murine infection models with biological clones of dengue viruses derived from a single clinical viral isolate (2020) Virol. Sin., 35, pp. 626-636. , PID: 32451883, COI: 1:CAS:528:DC%2BB3cXhtVSgsrnJ; Williams, K.L., Therapeutic efficacy of antibodies lacking Fcgamma receptor binding against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies [corrected] (2013) PLOS Pathog., 9. , COI: 1:CAS:528:DC%2BC3sXktlWjtro%3D, PID: 23459315; Kotaki, T., Continuous dengue type 1 virus genotype shifts followed by co-circulation, clade shifts and subsequent disappearance in Surabaya, Indonesia, 2008–2013 (2014) Infect. Genet. Evol., 28, pp. 48-54. , PID: 25219342; Kotaki, T., Divergence of the dengue virus type 2 Cosmopolitan genotype associated with two predominant serotype shifts between 1 and 2 in Surabaya, Indonesia, 2008–2014 (2016) Infect. Genet. Evol., 37, pp. 88-93. , PID: 26553170; Fibriansah, G., Lok, S.M., The development of therapeutic antibodies against dengue virus (2016) Antivir. Res., 128, pp. 7-19. , COI: 1:CAS:528:DC%2BC28XitlShsbY%3D, PID: 26794397; Rainwater-Lovett, K., Rodriguez-Barraquer, I., Cummings, D.A., Lessler, J., Variation in dengue virus plaque reduction neutralization testing: Systematic review and pooled analysis (2012) BMC Infect. Dis., 12, p. 233. , PID: 23020074; Thomas, S.J., Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: How alterations in assay conditions impact performance (2009) Am. J. Trop. Med. Hyg., 81, pp. 825-833. , PID: 19861618; Budigi, Y., Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein (2018) PLoS Negl. Trop. Dis., 12. , PID: 29425203, COI: 1:CAS:528:DC%2BC1MXpvFCqtrc%3D; Capeding, M.R., Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial (2014) Lancet, 384, pp. 1358-1365. , COI: 1:CAS:528:DC%2BC2cXhtFGmtLnJ, PID: 25018116; Villar, L., Efficacy of a tetravalent dengue vaccine in children in Latin America (2015) N. Engl. J. Med., 372, pp. 113-123. , PID: 25365753, COI: 1:CAS:528:DC%2BC2MXhvFSqsrw%3D; Henein, S., Dissecting antibodies induced by a chimeric yellow fever-dengue, live-attenuated, tetravalent dengue vaccine (CYD-TDV) in naive and dengue-exposed individuals (2017) J. Infect. Dis., 215, pp. 351-358. , COI: 1:CAS:528:DC%2BC1cXitFCrtbnK, PID: 27932620; Barba-Spaeth, G., Structural basis of potent Zika-dengue virus antibody cross-neutralization (2016) Nature, 536, pp. 48-53. , COI: 1:CAS:528:DC%2BC28Xht12jur3I, PID: 27338953; Kostyuchenko, V.A., Structure of the thermally stable Zika virus (2016) Nature, 533, pp. 425-428. , COI: 1:CAS:528:DC%2BC28Xot1Smur8%3D, PID: 27093288; Deng, Y.Q., A broadly Flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of e protein (2011) PLoS ONE, 6. , COI: 1:CAS:528:DC%2BC3MXhtFWgu7s%3D, PID: 21264311; Tsai, W.Y., High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection (2013) J. Virol., 87, pp. 12562-12575. , COI: 1:CAS:528:DC%2BC3sXhvVygsrbE, PID: 24027331; Oliphant, T., Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus (2005) Nat. Med., 11, pp. 522-530. , COI: 1:CAS:528:DC%2BD2MXjvVOls7g%3D, PID: 15852016; Flingai, S., Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy (2015) Sci. Rep., 5, p. 12616. , COI: 1:CAS:528:DC%2BC2MXhtlCjsbrN, PID: 26220099; Gibbons, R.V., Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences (2007) Am. J. Trop. Med. Hyg., 77, pp. 910-913. , PID: 17984352; Sasaki, T., Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection (2013) Antivir. Res., 98, pp. 423-431. , COI: 1:CAS:528:DC%2BC3sXotlGrtLo%3D, PID: 23545366; Hsu, A.Y., Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance (2015) Sci. Rep., 5, p. 17990. , COI: 1:CAS:528:DC%2BC2MXitVWqsrvN, PID: 26657027; Raut, R., Dengue type 1 viruses circulating in humans are highly infectious and poorly neutralized by human antibodies (2019) Proc. Natl. Acad. Sci. U. S. A., 116, pp. 227-232. , COI: 1:CAS:528:DC%2BC1MXhslOmug%3D%3D, PID: 30518559; Konishi, E., Kosugi, S., Imoto, J., Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice (2006) Vaccine, 24, pp. 2200-2207. , COI: 1:CAS:528:DC%2BD28XhsF2hur4%3D, PID: 16316713; Smith, K., Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen (2009) Nat. Protoc., 4, pp. 372-384. , COI: 1:CAS:528:DC%2BD1MXivF2iu70%3D, PID: 19247287

Indexed by Scopus

Leave a Comment