A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine

Moghadasi S., Elveny M., Rahman H.S., Suksatan W., Jalil A.T., Abdelbasset W.K., Yumashev A.V., Shariatzadeh S., Motavalli R., Behzad F., Marofi F., Hassanzadeh A., Pathak Y., Jarahian M.

Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia; College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq; Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq; Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus; Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt; Sechenov First Moscow State Medical University, Moscow, Russian Federation; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran; Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States; German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, 69120, Germany


Abstract

Recently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches. © 2021, The Author(s).

Exosomes; Mesenchymal stem/stromal cells (MSCs); Micro-RNAs (miRNAs); Regenerative medicine


Journal

Journal of Translational Medicine

Publisher: BioMed Central Ltd

Volume 19, Issue 1, Art No 302, Page – , Page Count


Journal Link: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109798873&doi=10.1186%2fs12967-021-02980-6&partnerID=40&md5=2b3269266e637dc3363b07119ef7f783

doi: 10.1186/s12967-021-02980-6

Issn: 14795876

Type: All Open Access, Gold, Green


References

Bernardo, M.E., Fibbe, W.E., Mesenchymal stromal cells and hematopoietic stem cell transplantation (2015) Immunol Lett, 168, pp. 215-221. , COI: 1:CAS:528:DC%2BC2MXhtVyht7jM, PID: 26116911; Shariati, A., Nemati, R., Sadeghipour, Y., Yaghoubi, Y., Baghbani, R., Javidi, K., Zamani, M., Hassanzadeh, A., Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier (2020) Eur J Cell Biol, 99, p. 151097. , COI: 1:CAS:528:DC%2BB3cXhtlSht7zF, PID: 32800276; Marofi, F., Hassanzadeh, A., Solali, S., Vahedi, G., Mousavi Ardehaie, R., Salarinasab, S., Aliparasti, M.R., Farshdousti Hagh, M., Epigenetic mechanisms are behind the regulation of the key genes associated with the osteoblastic differentiation of the mesenchymal stem cells: The role of zoledronic acid on tuning the epigenetic changes (2019) J Cell Physiol, 234, pp. 15108-15122. , COI: 1:CAS:528:DC%2BC1MXhtFCrsb0%3D; Markov, A., Thangavelu, L., Aravindhan, S., Zekiy, A.O., Jarahian, M., Chartrand, M.S., Pathak, Y., Hassanzadeh, A., Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders (2021) Stem Cell Res Ther, 12, pp. 1-30. , COI: 1:CAS:528:DC%2BB3MXntVOmsb4%3D; Tavakoli, S., Ghaderi Jafarbeigloo, H.R., Shariati, A., Jahangiryan, A., Jadidi, F., Jadidi Kouhbanani, M.A., Hassanzadeh, A., Naimi, A., Mesenchymal stromal cells; a new horizon in regenerative medicine (2020) J Cell Physiol, 235 (12), pp. 9185-9210. , COI: 1:CAS:528:DC%2BB3cXhtVSjtb%2FK, PID: 32452052; Marofi, F., Vahedi, G., Hasanzadeh, A., Salarinasab, S., Arzhanga, P., Khademi, B., Farshdousti Hagh, M., Mesenchymal stem cells as the game-changing tools in the treatment of various organs disorders: mirage or reality? (2018) J Cell Physiol, 234 (2), pp. 1268-1288. , PID: 30191962, COI: 1:CAS:528:DC%2BC1cXhs1Kjs7zE; Bodart-Santos, V., de Carvalho, L.R.P., de Godoy, M.A., Batista, A.F., Saraiva, L.M., Lima, L.G., Abreu, C.A., Ferreira, S.T., Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-beta oligomers (2019) Stem Cell Res Ther, 10, p. 332. , COI: 1:CAS:528:DC%2BC1MXitF2lsLfO, PID: 31747944; Leng, L., Wang, Y., He, N., Wang, D., Zhao, Q., Feng, G., Su, W., Kong, D., Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy (2014) Biomaterials, 35, pp. 5162-5170. , COI: 1:CAS:528:DC%2BC2cXltFOmurc%3D, PID: 24685267; Bodart-Santos, V., de Carvalho, L.R.P., de Godoy, M.A., Batista, A.F., Saraiva, L.M., Lima, L.G., Abreu, C.A., Ferreira, S.T., Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers (2019) Stem Cell Res Ther, 10, p. 332. , COI: 1:CAS:528:DC%2BC1MXitF2lsLfO, PID: 31747944; Fujii, S., Miura, Y., Fujishiro, A., Shindo, T., Shimazu, Y., Hirai, H., Tahara, H., Maekawa, T., Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations (2018) Stem Cells, 36, pp. 434-445. , COI: 1:CAS:528:DC%2BC1cXjtlOrt74%3D, PID: 29239062; Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., Xu, J., Functional proteins of mesenchymal stem cell-derived extracellular vesicles (2019) Stem Cell Res Ther, 10, pp. 1-11; Rani, S., Ryan, A.E., Griffin, M.D., Ritter, T., Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications (2015) Mol Ther, 23, pp. 812-823. , COI: 1:CAS:528:DC%2BC2MXmsFShu7c%3D, PID: 25868399; Merino-González, C., Zuñiga, F.A., Escudero, C., Ormazabal, V., Reyes, C., Nova-Lamperti, E., Salomón, C., Aguayo, C., Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application (2016) Front Physiol, 7, p. 24. , PID: 26903875; Eirin, A., Zhu, X.-Y., Puranik, A.S., Tang, H., McGurren, K.A., van Wijnen, A.J., Lerman, A., Lerman, L.O., Mesenchymal stem cell–derived extracellular vesicles attenuate kidney inflammation (2017) Kidney Int, 92, pp. 114-124. , COI: 1:CAS:528:DC%2BC2sXjsFGht7s%3D, PID: 28242034; Camussi, G., Deregibus, M.-C., Bruno, S., Grange, C., Fonsato, V., Tetta, C., Exosome/microvesicle-mediated epigenetic reprogramming of cells (2011) Am J Cancer Res, 1, p. 98. , PID: 21969178; Nawaz, M., Fatima, F., Zanetti, B.R., de Martins, I., Schiavotelo, N.L., Mendes, N.D., Silvestre, R.N., Neder, L., Microvesicles in gliomas and medulloblastomas: An overview (2014) J Cancer Ther, 2014; Motavaf, M., Pakravan, K., Babashah, S., Malekvandfard, F., Masoumi, M., Sadeghizadeh, M., Therapeutic application of mesenchymal stem cell-derived exosomes: a promising cell-free therapeutic strategy in regenerative medicine (2016) Cell Mol Biol (Noisy-le-grand), 62, pp. 74-79. , COI: 1:STN:280:DC%2BC2s3jslWqtQ%3D%3D; Monsel, A., Zhu, Y.-G., Gudapati, V., Lim, H., Lee, J.W., Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases (2016) Exp Opin Biol Ther, 16, pp. 859-871. , COI: 1:CAS:528:DC%2BC28XmsVGis70%3D; Zhang, G., Zou, X., Huang, Y., Wang, F., Miao, S., Liu, G., Chen, M., Zhu, Y., Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats (2016) Kidney Blood Press Res, 41, pp. 119-128. , COI: 1:CAS:528:DC%2BB3cXitl2lsr7N, PID: 26894749; Liu, Y., Cui, J., Wang, H., Hezam, K., Zhao, X., Huang, H., Chen, S., Guo, Z., Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment (2020) Stem Cell Res Ther, 11, pp. 1-12. , COI: 1:CAS:528:DC%2BB3cXit1Sisb7I; Wang, M., Yan, L., Li, Q., Yang, Y., Turrentine, M., March, K., Wang, I.-W., Mesenchymal stem cell secretions improve donor heart function following ex vivo cold storage (2020) J Thor Cardiovasc Surg; Mardpour, S., Ghanian, M.H., Sadeghi-Abandansari, H., Mardpour, S., Nazari, A., Shekari, F., Baharvand, H., Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure (2019) ACS Appl Mater Interfaces, 11, pp. 37421-37433. , COI: 1:CAS:528:DC%2BC1MXhslOqu7vO, PID: 31525863; Yao, J., Zheng, J., Cai, J., Zeng, K., Zhou, C., Zhang, J., Li, S., He, L., Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response (2019) FASEB J, 33, pp. 1695-1710. , COI: 1:CAS:528:DC%2BC1MXovFOns7c%3D, PID: 30226809; Ophelders, D.R., Wolfs, T.G., Jellema, R.K., Zwanenburg, A., Andriessen, P., Delhaas, T., Ludwig, A.-K., Janssen, L., Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia (2016) Stem Cells Transl Med, 5, pp. 754-763. , COI: 1:CAS:528:DC%2BC2sXmvVWht7s%3D, PID: 27160705; Doeppner, T.R., Herz, J., Görgens, A., Schlechter, J., Ludwig, A.-K., Radtke, S., de Miroschedji, K., Hermann, D.M., Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression (2015) Stem Cells Transl Med, 4, pp. 1131-1143. , COI: 1:CAS:528:DC%2BC28XhtVKrs7vO, PID: 26339036; Friedenstein, A., Piatetzky-Shapiro, I., Petrakova, K., Osteogenesis in transplants of bone marrow cells (1966) Development, 16, pp. 381-390. , COI: 1:STN:280:DyaF2s7isFWjsw%3D%3D; Friedenstein, A.J., Deriglasova, U.F., Kulagina, N.N., Panasuk, A.F., Rudakowa, S.F., Luriá, E.A., Ruadkow, I.A., Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method (1974) Exp Hematol, 2, pp. 83-92. , COI: 1:STN:280:DyaE2M7jtFWktQ%3D%3D, PID: 4455512; Tatullo, M., Codispoti, B., Pacifici, A., Palmieri, F., Marrelli, M., Pacifici, L., Paduano, F., Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications (2017) Front Cell Dev Biol, 5, p. 103. , PID: 29259970; Hwang, N.S., Zhang, C., Hwang, Y.S., Varghese, S., Mesenchymal stem cell differentiation and roles in regenerative medicine (2009) Wiley Interdiscipl Rev, 1, pp. 97-106. , COI: 1:CAS:528:DC%2BD1MXotlalu7g%3D; Tavakoli, S., Ghaderi Jafarbeigloo, H.R., Shariati, A., Jahangiryan, A., Jadidi, F., Jadidi Kouhbanani, M.A., Hassanzadeh, A., Naimi, A., Mesenchymal stromal cells; a new horizon in regenerative medicine (2020) J Cell Physiol, 235, pp. 9185-9210. , COI: 1:CAS:528:DC%2BB3cXhtVSjtb%2FK, PID: 32452052; Via, A.G., Frizziero, A., Oliva, F., Biological properties of mesenchymal stem cells from different sources (2012) Muscles Ligam Tendons J, 2, p. 154; Jin, H.J., Bae, Y.K., Kim, M., Kwon, S.J., Jeon, H.B., Choi, S.J., Kim, S.W., Chang, J.W., Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy (2013) Int J Mol Sci, 14, pp. 17986-18001. , PID: 24005862; Wang, Q., Yang, Q., Wang, Z., Tong, H., Ma, L., Zhang, Y., Shan, F., Yuan, Z., Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy (2016) Hum Vaccin Immunother, 12, pp. 85-96. , PID: 26186552; Burk, J., Ribitsch, I., Gittel, C., Juelke, H., Kasper, C., Staszyk, C., Brehm, W., Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources (2013) Vet J, 195, pp. 98-106. , COI: 1:CAS:528:DC%2BC38XhtFahtL%2FN, PID: 22841420; Urrutia, D.N., Caviedes, P., Mardones, R., Minguell, J.J., Vega-Letter, A.M., Jofre, C.M., Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies (2019) PLoS ONE, 14. , COI: 1:CAS:528:DC%2BC1MXnvFaqtr8%3D, PID: 30856179; Pan, B.T., Johnstone, R.M., Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor (1983) Cell, 33, pp. 967-978. , COI: 1:CAS:528:DyaL3sXltF2rurk%3D, PID: 6307529; Von Bartheld, C.S., Altick, A.L., Multivesicular bodies in neurons: distribution, protein content, and trafficking functions (2011) Prog Neurobiol, 93, pp. 313-340; Hessvik, N.P., Llorente, A., Current knowledge on exosome biogenesis and release (2018) Cell Mol Life Sci, 75, pp. 193-208. , COI: 1:CAS:528:DC%2BC2sXht1Wru73K, PID: 28733901; Altick, A.L., Baryshnikova, L.M., Vu, T.Q., von Bartheld, C.S., Quantitative analysis of multivesicular bodies (MVBs) in the hypoglossal nerve: evidence that neurotrophic factors do not use MVBs for retrograde axonal transport (2009) J Comp Neurol, 514, pp. 641-657. , PID: 19363811; Nikfarjam, S., Rezaie, J., Zolbanin, N.M., Jafari, R., Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine (2020) J Transl Med, 18, p. 449. , PID: 33246476; Möbius, W., Ohno-Iwashita, Y., van Donselaar, E.G., Oorschot, V.M., Shimada, Y., Fujimoto, T., Heijnen, H.F., Slot, J.W., Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O (2002) J Histochem Cytochem, 50, pp. 43-55. , PID: 11748293; Chen, Q., Takada, R., Noda, C., Kobayashi, S., Takada, S., Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells (2016) Sci Rep, 6, pp. 1-10. , COI: 1:CAS:528:DC%2BC2sXhslGmur3N; Bunggulawa, E.J., Wang, W., Yin, T., Wang, N., Durkan, C., Wang, Y., Wang, G., Recent advancements in the use of exosomes as drug delivery systems (2018) J Nanobiotechnol, 16, p. 81. , COI: 1:CAS:528:DC%2BC1MXhtFaisLrL; Chen, T.S., Arslan, F., Yin, Y., Tan, S.S., Lai, R.C., Choo, A.B.H., Padmanabhan, J., Lim, S.K., Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs (2011) J Transl Med, 9, pp. 1-10. , COI: 1:CAS:528:DC%2BC3MXosVKqtw%3D%3D; Wang, J., Bonacquisti, E.E., Brown, A.D., Nguyen, J., Boosting the biogenesis and secretion of mesenchymal stem cell-derived exosomes (2020) Cells, 9, p. 1; Cao, J., Wang, B., Tang, T., Lv, L., Ding, Z., Li, Z., Hu, R., Liu, B., Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury (2020) Stem Cell Res Ther, 11, p. 206. , COI: 1:CAS:528:DC%2BB3cXhtVCqsLrM, PID: 32460853; Qazi, T.H., Mooney, D.J., Duda, G.N., Geissler, S., Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs (2017) Biomaterials, 140, pp. 103-114. , COI: 1:CAS:528:DC%2BC2sXhtVamtrzI, PID: 28644976; Phan, J., Kumar, P., Hao, D., Gao, K., Farmer, D., Wang, A., Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy (2018) J Extracell Vesicles, 7, p. 1522236. , COI: 1:CAS:528:DC%2BC1MXhvVOrtrvN, PID: 30275938; Gobin, J., Muradia, G., Mehic, J., Westwood, C., Couvrette, L., Stalker, A., Bigelow, S., Johnston, M.J.W., Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell (2021) Stem Cell Res Ther, 12, p. 127. , COI: 1:CAS:528:DC%2BB3MXntVOhtrs%3D, PID: 33579358; Liao, Z., Li, S., Lu, S., Liu, H., Li, G., Ma, L., Luo, R., Xiang, Q., Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration (2021) Biomaterials, 274, p. 120850. , COI: 1:CAS:528:DC%2BB3MXhtVKltbzO, PID: 33984637; Haupt, M., Zheng, X., Kuang, Y., Lieschke, S., Janssen, L., Bosche, B., Jin, F., Venkataramani, V., Lithium modulates miR-1906 levels of mesenchymal stem cell-derived extracellular vesicles contributing to poststroke neuroprotection by toll-like receptor 4 regulation (2021) Stem Cells Transl Med, 10, pp. 357-373. , COI: 1:CAS:528:DC%2BB3MXpvFCqu7s%3D, PID: 33146943; Wang, L., Abhange, K.K., Wen, Y., Chen, Y., Xue, F., Wang, G., Tong, J., Wan, Y., Preparation of engineered extracellular vesicles derived from human umbilical cord mesenchymal stem cells with ultrasonication for skin rejuvenation (2019) ACS Omega, 4, pp. 22638-22645. , COI: 1:CAS:528:DC%2BC1MXisVWktbrJ, PID: 31909348; Marote, A., Teixeira, F.G., Mendes-Pinheiro, B., Salgado, A.J., MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential (2016) Front Pharmacol, 7, p. 231. , PID: 27536241; Zhang, W., Wang, Y., Kong, Y., Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1 (2019) Invest Ophthalmol Vis Sci, 60, pp. 294-303. , COI: 1:CAS:528:DC%2BC1MXhtFyhtrbJ, PID: 30657854; Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Mark, M.T., Molina, H., Ceder, S., Tumour exosome integrins determine organotropic metastasis (2015) Nature, 527, pp. 329-335. , COI: 1:CAS:528:DC%2BC2MXhslOrtb7P, PID: 26524530; Nazarenko, I., Rana, S., Baumann, A., McAlear, J., Hellwig, A., Trendelenburg, M., Lochnit, G., Zöller, M., Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation (2010) Can Res, 70, pp. 1668-1678. , COI: 1:CAS:528:DC%2BC3cXhvFaktrs%3D; Segura, E., Nicco, C., Lombard, B., Véron, P., Raposo, G., Batteux, F., Amigorena, S., Théry, C., ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming (2005) Blood, 106, pp. 216-223. , COI: 1:CAS:528:DC%2BD2MXlvVWjsbs%3D, PID: 15790784; Bonjoch, L., Gironella, M., Iovanna, J.L., Closa, D., REG3β modifies cell tumor function by impairing extracellular vesicle uptake (2017) Sci Rep, 7, pp. 1-11. , COI: 1:CAS:528:DC%2BC1cXhtlKgt77I; Nikfarjam, S., Rezaie, J., Zolbanin, N.M., Jafari, R., Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine (2020) J Transl Med, 18, pp. 1-21; Mashouri, L., Yousefi, H., Aref, A.R., Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance (2019) Mol Cancer, 18, p. 75. , PID: 30940145; Ferguson, S.W., Wang, J., Lee, C.J., Liu, M., Neelamegham, S., Canty, J.M., Nguyen, J., The microRNA regulatory landscape of MSC-derived exosomes: a systems view (2018) Sci Rep, 8, pp. 1-12. , COI: 1:CAS:528:DC%2BC1cXhs1ehs7%2FM; Chhabra, R., Dubey, R., Saini, N., Cooperative and individualistic functions of the microRNAs in the miR-23a~ 27a–24-2 cluster and its implication in human diseases (2010) Mol Cancer, 9, pp. 1-16. , COI: 1:CAS:528:DC%2BC3cXhtFGisbfO; Shao, L., Zhang, Y., Lan, B., Wang, J., Zhang, Z., Zhang, L., Xiao, P., Meng, Q., Geng Y-j, Yu X-y: MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair (2017) BioMed Res Int, 2017, p. 4150705. , PID: 28203568; Purushothaman, A., Exosomes from cell culture-conditioned medium: Isolation by ultracentrifugation and characterization (2019) In the Extracellular Matrix. Springer, pp. 233-244; Ishiguro, K., Yan, I.K., Patel, T., Isolation of Tissue Extracellular Vesicles from the Liver (2019) Journal of Visualized Experiments: Jove; Mallia, A., Gianazza, E., Zoanni, B., Brioschi, M., Barbieri, S.S., Banfi, C., Proteomics of extracellular vesicles: update on their composition, biological roles and potential use as diagnostic tools in atherosclerotic cardiovascular diseases (2020) Diagnostics (Basel), 10, p. 1; De Bari, C., Roelofs, A.J., Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis (2018) Curr Opin Pharmacol, 40, pp. 74-80. , PID: 29625333, COI: 1:CAS:528:DC%2BC1cXmvFamtbg%3D; Vonk, L.A., van Dooremalen, S.F., Liv, N., Klumperman, J., Coffer, P.J., Saris, D.B., Lorenowicz, M.J., Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro (2018) Theranostics, 8, p. 906. , COI: 1:CAS:528:DC%2BC1cXitFaqt7nF, PID: 29463990; Cai, J., Wu, J., Wang, J., Li, Y., Hu, X., Luo, S., Xiang, D., Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential (2020) Cell Biosci, 10, p. 69. , COI: 1:CAS:528:DC%2BB3cXhtVansL3F, PID: 32483483; Mardpour, S., Hassani, S.N., Mardpour, S., Sayahpour, F., Vosough, M., Ai, J., Aghdami, N., Baharvand, H., Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury (2018) J Cell Physiol, 233, pp. 9330-9344. , COI: 1:CAS:528:DC%2BC1cXhtFKgsrjF, PID: 29266258; Chance, T.C., Herzig, M.C., Christy, B.A., Delavan, C., Rathbone, C.R., Cap, A.P., Bynum, J.A., Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro (2020) J Trauma Acute Care Surg, 89, pp. S100-s108. , COI: 1:CAS:528:DC%2BB3cXhsFSju7fI, PID: 32176171; Del Fattore, A., Luciano, R., Saracino, R., Battafarano, G., Rizzo, C., Pascucci, L., Alessandri, G., Muraca, M., Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells (2015) Expert Opin Biol Ther, 15, pp. 495-504. , PID: 25539575, COI: 1:CAS:528:DC%2BC2MXkvVGrur0%3D; Gardiner, C., Vizio, D.D., Sahoo, S., Théry, C., Witwer, K.W., Wauben, M., Hill, A.F., Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey (2016) J Extracell Vesic, 5, p. 32945. , COI: 1:CAS:528:DC%2BC1cXptlCjtLg%3D; Yeo, Y., Wee, R., (2013) Efficiency of exosome production correlates inversely with the developmental maturity of MSC Donor; Colao, I.L., Corteling, R., Bracewell, D., Wall, I., Manufacturing exosomes: a promising therapeutic platform (2018) Trends Mol Med, 24, pp. 242-256. , COI: 1:CAS:528:DC%2BC1cXitV2luro%3D, PID: 29449149; Gupta, S., Rawat, S., Arora, V., Kottarath, S.K., Dinda, A.K., Vaishnav, P.K., Nayak, B., Mohanty, S., An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells (2018) Stem Cell Res Ther, 9, pp. 1-11. , COI: 1:CAS:528:DC%2BC1cXhsVCgs7bI; Zhang, M., Jin, K., Gao, L., Zhang, Z., Li, F., Zhou, F., Zhang, L., Methods and technologies for exosome isolation and characterization (2018) Small Methods, 2, p. 1800021. , COI: 1:CAS:528:DC%2BC1cXhslaitLzN; Yamashita, T., Takahashi, Y., Nishikawa, M., Takakura, Y., Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation (2016) Eur J Pharm Biopharm, 98, pp. 1-8. , COI: 1:CAS:528:DC%2BC2MXhslOrsrfL, PID: 26545617; Doyle, L.M., Wang, M.Z., Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis (2019) Cells, 8, p. 727. , COI: 1:CAS:528:DC%2BB3cXjsFams7g%3D; Vlassov, A.V., Magdaleno, S., Setterquist, R., Conrad, R., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials (2012) Biochimica et Biophysica Acta, 1820, pp. 940-948. , COI: 1:CAS:528:DC%2BC38XnslSjt7c%3D, PID: 22503788; Böing, A.N., Van Der Pol, E., Grootemaat, A.E., Coumans, F.A., Sturk, A., Nieuwland, R., Single-step isolation of extracellular vesicles by size-exclusion chromatography (2014) J Extracell Vesic, 3, p. 23430; Théry, C., Amigorena, S., Raposo, G., Clayton, A., Isolation and characterization of exosomes from cell culture supernatants and biological fluids (2006) Curr Prot Cell Biol, 30, p. 3.22; Lai, P., Weng, J., Guo, L., Chen, X., Du, X., Novel insights into MSC-EVs therapy for immune diseases (2019) Biomarker Res, 7, p. 6; Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., Mi, S., Exosome and exosomal microRNA: trafficking, sorting, and function (2015) Genomics Proteom Bioinform, 13, pp. 17-24. , COI: 1:CAS:528:DC%2BC1cXitlClu7rJ; Li, J.W., Wei, L., Han, Z., Chen, Z., Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p (2019) Eur J Pharmacol, 852, pp. 68-76. , COI: 1:CAS:528:DC%2BC1MXkvVequrk%3D, PID: 30682335; Wu, Y., Li, J., Yuan, R., Deng, Z., Wu, X., Bone marrow mesenchymal stem cell-derived exosomes alleviate hyperoxia-induced lung injury via the manipulation of microRNA-425 (2021) Arch Biochem Biophys, 697, p. 108712. , COI: 1:CAS:528:DC%2BB3cXis1ajsbbL, PID: 33264631; Yi, X., Wei, X., Lv, H., An, Y., Li, L., Lu, P., Yang, Y., Chen, G., Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3 (2019) Exp Cell Res, 383, p. 111454. , COI: 1:CAS:528:DC%2BC1MXhsVOgsbnK, PID: 31170401; Liu, J.S., Du, J., Cheng, X., Zhang, X.Z., Li, Y., Chen, X.L., Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury (2019) J Chin Med Assoc, 82, pp. 895-901. , PID: 31800531; Zhang, Z.M., Wang, Y.C., Chen, L., Li, Z., Protective effects of the suppressed NF-κB/TLR4 signaling pathway on oxidative stress of lung tissue in rat with acute lung injury (2019) Kaohsiung J Med Sci, 35, pp. 265-276. , COI: 1:CAS:528:DC%2BC1MXptVCnsLw%3D, PID: 31001923; Liu, J., Chen, T., Lei, P., Tang, X., Huang, P., Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-κB pathway (2019) Int J Med Sci, 16, pp. 1238-1244. , COI: 1:CAS:528:DC%2BB3cXlsVKmsbs%3D, PID: 31588189; Xu, N., Shao, Y., Ye, K., Qu, Y., Memet, O., He, D., Shen, J., Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats (2019) Inhal Toxicol, 31, pp. 52-60. , COI: 1:CAS:528:DC%2BC1MXptlahsrg%3D, PID: 31068039; Glasser, S.W., Witt, T.L., Senft, A.P., Baatz, J.E., Folger, D., Maxfield, M.D., Akinbi, H.T., Korfhagen, T.R., Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection (2009) Am J Physiol, 297, pp. L64-L72. , COI: 1:CAS:528:DC%2BD1MXovVKisrs%3D; Chaubey, S., Thueson, S., Ponnalagu, D., Alam, M.A., Gheorghe, C.P., Aghai, Z., Singh, H., Bhandari, V., Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6 (2018) Stem Cell Res Ther, 9, p. 173. , COI: 1:CAS:528:DC%2BC1MXlsl2nsrg%3D, PID: 29941022; Bryan, C., Sammour, I., Guerra, K., Sharma, M., Dapaah-Siakwan, F., Huang, J., Zambrano, R., Young, K., TNFα-stimulated protein 6 (TSG-6) reduces lung inflammation in an experimental model of bronchopulmonary dysplasia (2019) Pediatr Res, 85, pp. 390-397. , PID: 30538263, COI: 1:CAS:528:DC%2BB3cXltl2ktrw%3D; Sengupta, V., Sengupta, S., Lazo, A., Woods, P., Nolan, A., Bremer, N., Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19 (2020) Stem Cells Dev, 29, pp. 747-754. , COI: 1:CAS:528:DC%2BB3cXhtFKhu7rO, PID: 32380908; Rong, X., Liu, J., Yao, X., Jiang, T., Wang, Y., Xie, F., Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway (2019) Stem Cell Res Ther, 10, p. 98. , COI: 1:CAS:528:DC%2BC1MXhslWqsrnM, PID: 30885249; Zhang, C.-Y., Yuan, W.-G., He, P., Lei, J.-H., Wang, C.-X., Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets (2016) World J Gastroenterol, 22, pp. 10512-10522. , COI: 1:CAS:528:DC%2BC1cXivFWrur0%3D, PID: 28082803; Jun, J.H., Kim, J.Y., Choi, J.H., Lim, J.Y., Kim, K., Kim, G.J., Exosomes from placenta-derived mesenchymal stem cells are involved in liver regeneration in hepatic failure induced by bile duct ligation (2020) Stem Cells Int, 2020, p. 5485738. , PID: 33133194, COI: 1:CAS:528:DC%2BB3cXis1emsrbE; Lou, G., Yang, Y., Liu, F., Ye, B., Chen, Z., Zheng, M., Liu, Y., MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis (2017) J Cell Mol Med, 21, pp. 2963-2973. , COI: 1:CAS:528:DC%2BC2sXhslGgs7rK, PID: 28544786; Zhang, S., Jiang, L., Hu, H., Wang, H., Wang, X., Jiang, J., Ma, Y., Zhang, Q., Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage (2020) Life Sci, 246, p. 117401. , COI: 1:CAS:528:DC%2BB3cXjsF2gtrk%3D, PID: 32035931; Liu, Y., Lou, G., Li, A., Zhang, T., Qi, J., Ye, D., Zheng, M., Chen, Z., AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages (2018) EBioMedicine, 36, pp. 140-150. , PID: 30197023; Li, L., Ismael, S., Nasoohi, S., Sakata, K., Liao, F.F., McDonald, M.P., Ishrat, T., Thioredoxin-interacting protein (TXNIP) associated NLRP3 inflammasome activation in human Alzheimer’s disease brain (2019) J Alzheimers Dis, 68, pp. 255-265. , COI: 1:CAS:528:DC%2BC1MXkvVaqurg%3D, PID: 30741672; Chen, L., Xiang, B., Wang, X., Xiang, C., Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure (2017) Stem Cell Res Ther, 8, p. 9. , PID: 28115012, COI: 1:CAS:528:DC%2BC1cXlsVahtrc%3D; Collino, F., Bruno, S., Incarnato, D., Dettori, D., Neri, F., Provero, P., Pomatto, M., Camussi, G., AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs (2015) J Am Soc Nephrol, 26, pp. 2349-2360. , COI: 1:CAS:528:DC%2BC28Xls1yrsro%3D, PID: 25901032; Wang, B., Yao, K., Huuskes, B.M., Shen, H.H., Zhuang, J., Godson, C., Brennan, E.P., Ricardo, S.D., Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis (2016) Mol Ther, 24, pp. 1290-1301. , COI: 1:CAS:528:DC%2BC28XhtVCltb7L, PID: 27203438; Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., Zhang, B., Yan, Y., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro (2013) Stem Cell Res Ther, 4, p. 34. , COI: 1:CAS:528:DC%2BC3sXotFCksrY%3D, PID: 23618405; He, J., Wang, Y., Lu, X., Zhu, B., Pei, X., Wu, J., Zhao, W., Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing (2015) Nephrology (Carlton), 20, pp. 591-600. , COI: 1:CAS:528:DC%2BC2MXhtlOnt7nJ; Yoon, Y.M., Go, G., Yun, C.W., Lim, J.H., Lee, J.H., Lee, S.H., Melatonin Suppresses Renal Cortical Fibrosis by Inhibiting Cytoskeleton Reorganization and Mitochondrial Dysfunction through Regulation of miR-4516 (2020) Int J Mol Sci, 21, p. 1; Rahman, A., Hasan, A.U., Kobori, H., Melatonin in chronic kidney disease: a promising chronotherapy targeting the intrarenal renin–angiotensin system (2019) Hypertens Res, 42, pp. 920-923. , PID: 30760889; Yoon, Y.M., Lee, J.H., Song, K.H., Noh, H., Lee, S.H., Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins (2020) J Pineal Res, 68. , COI: 1:CAS:528:DC%2BB3cXjtFersLY%3D, PID: 31989677; Matsuda, S., Kitagishi, Y., Kobayashi, M., Function and characteristics of PINK1 in mitochondria (2013) Oxid Med Cell Longev, 2013, p. 601587. , PID: 23533695, COI: 1:CAS:528:DC%2BC3sXktV2hur0%3D; Cui, G.H., Wu, J., Mou, F.F., Xie, W.H., Wang, F.B., Wang, Q.L., Fang, J., Guo, H.D., Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice (2018) Faseb J, 32, pp. 654-668. , COI: 1:CAS:528:DC%2BC1cXhs1WrtLfL, PID: 28970251; Nakano, M., Kubota, K., Kobayashi, E., Chikenji, T.S., Saito, Y., Konari, N., Fujimiya, M., Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus (2020) Sci Rep, 10, p. 10772. , COI: 1:CAS:528:DC%2BB3cXhtlajsrzK, PID: 32612165; Baharlooi, H., Nouraei, Z., Azimi, M., Moghadasi, A.N., Tavassolifar, M.J., Moradi, B., Sahraian, M.A., Izad, M., Umbilical cord mesenchymal stem cells as well as their released exosomes suppress proliferation of activated PBMCs in multiple sclerosis (2020) Scand J Immunol, 1; Soundara Rajan, T., Giacoppo, S., Diomede, F., Bramanti, P., Trubiani, O., Mazzon, E., Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis (2017) Int J Immunopathol Pharmacol, 30, pp. 238-252. , COI: 1:CAS:528:DC%2BC1cXks1enug%3D%3D, PID: 28764573; Mendes-Pinheiro, B., Anjo, S.I., Manadas, B., Da Silva, J.D., Marote, A., Behie, L.A., Teixeira, F.G., Salgado, A.J., Bone marrow mesenchymal stem cells’ secretome exerts neuroprotective effects in a Parkinson’s disease rat model (2019) Front Bioeng Biotechnol, 7, p. 294. , PID: 31737616; Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.N., Li, T., Chen, H., Li, J., miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis (2019) Biomaterials, 206, pp. 87-100. , COI: 1:CAS:528:DC%2BC1MXmtVGltbs%3D, PID: 30927715; Wang, Y., Yu, D., Liu, Z., Zhou, F., Dai, J., Wu, B., Zhou, J., Liu, H., Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix (2017) Stem Cell Res Ther, 8, p. 189. , COI: 1:CAS:528:DC%2BC1MXjslGrsro%3D, PID: 28807034; Majumdar, M.K., Askew, R., Schelling, S., Stedman, N., Blanchet, T., Hopkins, B., Morris, E.A., Glasson, S.S., Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis (2007) Arthritis Rheum, 56, pp. 3670-3674. , COI: 1:CAS:528:DC%2BD2sXhsVSkt7jI, PID: 17968948; Rogerson, F.M., Stanton, H., East, C.J., Golub, S.B., Tutolo, L., Farmer, P.J., Fosang, A.J., Evidence of a novel aggrecan-degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5 (2008) Arthritis Rheum, 58, pp. 1664-1673. , COI: 1:CAS:528:DC%2BD1cXotVOntro%3D, PID: 18512787; Huang, G., Chubinskaya, S., Liao, W., Loeser, R.F., Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes (2017) Osteoarthritis Cartilage, 25, pp. 1505-1515. , COI: 1:STN:280:DC%2BC1cnls1GjtA%3D%3D, PID: 28587781; Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., Liao, W., Kang, Y., Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A (2018) Stem Cell Res Ther, 9, p. 247. , COI: 1:CAS:528:DC%2BC1MXmt1GhtLw%3D, PID: 30257711; Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., Noël, D., Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis (2018) Theranostics, 8, pp. 1399-1410. , COI: 1:CAS:528:DC%2BC1cXitFKqsLbI, PID: 29507629; Chen, Z., Wang, H., Xia, Y., Yan, F., Lu, Y., Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF (2018) J Immunol, 201, pp. 2472-2482. , COI: 1:CAS:528:DC%2BC1cXitleisLbI, PID: 30224512; Meng, H.Y., Chen, L.Q., Chen, L.H., The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell (2020) BMC Musculoskelet Disord, 21, p. 150. , COI: 1:CAS:528:DC%2BB3cXksFCju7s%3D, PID: 32143603; Zhang, L., Yuan, X., Zhou, Q., Shi, J., Song, Z., Quan, R., Zhang, D., Associations between TNFAIP3 gene polymorphisms and rheumatoid arthritis risk: a meta-analysis (2017) Arch Med Res, 48, pp. 386-392. , COI: 1:CAS:528:DC%2BC2sXhsFSms7zI, PID: 28888761; Wang, Z., Zhang, Z., Yuan, J., Li, L.I., Altered TNFAIP3 mRNA expression in peripheral blood mononuclear cells from patients with rheumatoid arthritis (2015) Biomed Rep, 3, pp. 675-680. , COI: 1:CAS:528:DC%2BC1cXlsFemsb8%3D, PID: 26405544; Su, Y., Liu, Y., Ma, C., Guan, C., Ma, X., Meng, S., Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway (2021) J Orthop Surg Res, 16, p. 116. , PID: 33549125; Lee, E.G., Boone, D.L., Chai, S., Libby, S.L., Chien, M., Lodolce, J.P., Ma, A., Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice (2000) Science, 289, pp. 2350-2354. , COI: 1:CAS:528:DC%2BD3cXmvF2qtbY%3D, PID: 11009421; Deng, S., Zhou, X., Ge, Z., Song, Y., Wang, H., Liu, X., Zhang, D., Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization (2019) Int J Biochem Cell Biol, 114, p. 105564. , COI: 1:CAS:528:DC%2BC1MXhtlersL7J, PID: 31276786; Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., Gao, L., Xu, B., Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization (2019) Cardiovasc Res, 115, pp. 1205-1216. , COI: 1:CAS:528:DC%2BB3cXhs1WmtL8%3D, PID: 30753344; Zhang, Y., Köhler, K., Xu, J., Lu, D., Braun, T., Schlitt, A., Buerke, M., Ebelt, H., Inhibition of p53 after acute myocardial infarction: reduction of apoptosis is counteracted by disturbed scar formation and cardiac rupture (2011) J Mol Cell Cardiol, 50, pp. 471-478. , COI: 1:CAS:528:DC%2BC3MXhsFOnsbk%3D, PID: 21074539; Zhu, L.P., Tian, T., Wang, J.Y., He, J.N., Chen, T., Pan, M., Xu, L., Li, C.C., Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction (2018) Theranostics, 8, pp. 6163-6177. , COI: 1:CAS:528:DC%2BC1MXhtV2ns7nN, PID: 30613290; Ma, J., Zhao, Y., Sun, L., Sun, X., Zhao, X., Sun, X., Qian, H., Zhu, W., Exosomes Derived from Akt-Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D (2017) Stem Cells Transl Med, 6, pp. 51-59. , COI: 1:CAS:528:DC%2BC2sXitlKgtLg%3D, PID: 28170176; Liu, X., Li, X., Zhu, W., Zhang, Y., Hong, Y., Liang, X., Fan, B., Zhang, F., Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair (2020) J Cell Physiol, 235, pp. 8010-8022. , COI: 1:CAS:528:DC%2BB3cXht1OqsLY%3D, PID: 31960418; Voss, S., Krüger, S., Scherschel, K., Warnke, S., Schwarzl, M., Schrage, B., Girdauskas, E., Lindner, D., Macrophage Migration Inhibitory Factor (MIF) expression increases during myocardial infarction and supports pro-inflammatory signaling in cardiac fibroblasts (2019) Biomolecules, 9, p. 38. , COI: 1:CAS:528:DC%2BC1MXjvFyqu7c%3D; Shabbir, A., Cox, A., Rodriguez-Menocal, L., Salgado, M., Badiavas, E.V., Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro (2015) Stem cells and development, 24, pp. 1635-1647. , COI: 1:CAS:528:DC%2BC2MXhtVOktr3F, PID: 25867197; He, X., Dong, Z., Cao, Y., Wang, H., Liu, S., Liao, L., Jin, Y., Li, B., MSC-derived exosome promotes m2 polarization and enhances cutaneous wound healing (2019) Stem Cells Int, 2019, p. 7132708. , PID: 31582986; Ding, J., Wang, X., Chen, B., Zhang, J., Xu, J., Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis (2019) Biomed Res Int, 2019, p. 9742765. , PID: 31192260; Liu, W., Yu, M., Xie, D., Wang, L., Ye, C., Zhu, Q., Liu, F., Yang, L., Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway (2020) Stem Cell Res Ther, 11, p. 259. , PID: 32600435, COI: 1:CAS:528:DC%2BB3cXhtlWgu77E; Yu, M., Liu, W., Li, J., Lu, J., Lu, H., Jia, W., Liu, F., Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway (2020) Stem Cell Res Ther, 11, p. 350. , COI: 1:CAS:528:DC%2BB3cXhs1aitbzO, PID: 32787917; Chen, Z., Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells (2018) Mol Biol Cell, 29, pp. 1190-1202. , PID: 29563255; Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., Shi, H., Xu, W., HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing (2015) Stem Cells, 33, pp. 2158-2168. , COI: 1:CAS:528:DC%2BC2MXhs1ajurzE, PID: 24964196; Hassanzadeh, A., Rahman, H.S., Markov, A., Endjun, J.J., Zekiy, A.O., Chartrand, M.S., Beheshtkhoo, N., Nikoo, M., Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities (2021) Stem Cell Res Ther, 12, pp. 1-22. , COI: 1:CAS:528:DC%2BB3MXhtlOmt73J; Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., Chaput, N., Court, F.A., Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper (2015) J Extracell Vesic, 4, p. 30087. , COI: 1:CAS:528:DC%2BC1cXmt1Kjsro%3D; Wiklander, O.P., Nordin, J.Z., O’Loughlin, A., Gustafsson, Y., Corso, G., Mäger, I., Vader, P., Seow, Y., Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting (2015) J Extracell Vesicles, 4, p. 26316. , PID: 25899407; Grange, C., Tapparo, M., Bruno, S., Chatterjee, D., Quesenberry, P.J., Tetta, C., Camussi, G., Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging (2014) Int J Mol Med, 33, pp. 1055-1063. , COI: 1:CAS:528:DC%2BC2cXht1egtb7M, PID: 24573178; Bari, E., Ferrarotti, I., Di Silvestre, D., Grisoli, P., Barzon, V., Balderacchi, A., Torre, M.L., Perteghella, S., Adipose mesenchymal extracellular vesicles as alpha-1-antitrypsin physiological delivery systems for lung regeneration (2019) Cells, 8, p. 1. , COI: 1:CAS:528:DC%2BB3cXmtVSmtr8%3D; Willis, G.R., Fernandez-Gonzalez, A., Anastas, J., Vitali, S.H., Liu, X., Ericsson, M., Kwong, A., Kourembanas, S., Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation (2018) Am J Respir Crit Care Med, 197, pp. 104-116. , COI: 1:CAS:528:DC%2BC1cXitFCltrfK, PID: 28853608; Mansouri, N., Willis, G.R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S.A., Kourembanas, S., Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes (2019) JCI Insight, 4, p. 1; Klinger, J.R., Pereira, M., Del Tatto, M., Brodsky, A.S., Wu, K.Q., Dooner, M.S., Borgovan, T., Aliotta, J.M., Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats (2020) Am J Respir Cell Mol Biol, 62, pp. 577-587. , COI: 1:CAS:528:DC%2BB3cXhtFKqs7%2FP, PID: 31721618; Yi, X., Wei, X., Lv, H., An, Y., Li, L., Lu, P., Yang, Y., Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3 (2019) Exp Cell Res, 383, p. 111454. , COI: 1:CAS:528:DC%2BC1MXhsVOgsbnK, PID: 31170401; Li, Q.-C., Liang, Y., Su, Z.-B., Prophylactic treatment with MSC-derived exosomes attenuates traumatic acute lung injury in rats (2019) Am J Physiol, 316, pp. L1107-L1117. , COI: 1:CAS:528:DC%2BC1MXhvVyjtb3E; Braun, R.K., Chetty, C., Balasubramaniam, V., Centanni, R., Haraldsdottir, K., Hematti, P., Eldridge, M.W., Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia (2018) Biochem Biophys Res Commun, 503, pp. 2653-2658. , COI: 1:CAS:528:DC%2BC1cXhsVGrt7%2FP, PID: 30093115; Chaubey, S., Thueson, S., Ponnalagu, D., Alam, M.A., Gheorghe, C.P., Aghai, Z., Singh, H., Bhandari, V., Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6 (2018) Stem Cell Res Ther, 9, pp. 1-26. , COI: 1:CAS:528:DC%2BC1MXlsl2nsrg%3D; Li, L., Jin, S., Zhang, Y., Ischemic preconditioning potentiates the protective effect of mesenchymal stem cells on endotoxin-induced acute lung injury in mice through secretion of exosome (2015) Int J Clin Exp Med, 8, pp. 3825-3832. , COI: 1:CAS:528:DC%2BC2MXhvFWntrrF, PID: 26064280; Harrell, C.R., Miloradovic, D., Sadikot, R., Fellabaum, C., Markovic, B.S., Miloradovic, D., Acovic, A., Volarevic, V., Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived Product “Exo-d-MAPPS” in attenuation of chronic airway inflammation (2020) Anal Cell Pathol (Amst), 2020, p. 3153891; Ren, J., Liu, Y., Yao, Y., Feng, L., Zhao, X., Li, Z., Yang, L., Intranasal delivery of MSC-derived exosomes attenuates allergic asthma via expanding IL-10 producing lung interstitial macrophages in mice (2021) Int Immunopharmacol, 91, p. 107288. , COI: 1:CAS:528:DC%2BB3cXislWnurbF, PID: 33360827; Riazifar, M., Mohammadi, M.R., Pone, E.J., Yeri, A., Lässer, C., Segaliny, A.I., McIntyre, L.L., Hamamoto, A., Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders (2019) ACS Nano, 13, pp. 6670-6688. , COI: 1:CAS:528:DC%2BC1MXpvFKgt78%3D, PID: 31117376; Chen, S.Y., Lin, M.C., Tsai, J.S., He, P.L., Luo, W.T., Herschman, H., Li, H.J., EP(4) antagonist-elicited extracellular vesicles from mesenchymal stem cells rescue cognition/learning deficiencies by restoring brain cellular functions (2019) Stem Cells Transl Med, 8, pp. 707-723. , COI: 1:CAS:528:DC%2BC1MXhsFKhsLzM, PID: 30891948; Giunti, D., Marini, C., Parodi, B., Usai, C., Milanese, M., Bonanno, G., Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation (2021) Sci Rep, 11, p. 1740. , COI: 1:CAS:528:DC%2BB3MXhvVShs7c%3D, PID: 33462263; Huang, J.H., Xu, Y., Yin, X.M., Lin, F.Y., Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats (2020) Neuroscience, 424, pp. 133-145. , COI: 1:CAS:528:DC%2BC1MXitFans73F, PID: 31704348; Liu, W., Rong, Y., Wang, J., Zhou, Z., Ge, X., Ji, C., Jiang, D., Chen, J., Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization (2020) J Neuroinflammation, 17, p. 47. , COI: 1:CAS:528:DC%2BB3cXkvVWksrc%3D, PID: 32019561; Lankford, K.L., Arroyo, E.J., Nazimek, K., Bryniarski, K., Askenase, P.W., Kocsis, J.D., Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord (2018) PLoS ONE, 13. , PID: 29293592, COI: 1:CAS:528:DC%2BC1cXhsFyhu7%2FM; Huang, J.H., Yin, X.M., Xu, Y., Xu, C.C., Lin, X., Ye, F.B., Cao, Y., Lin, F.Y., Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats (2017) J Neurotrauma, 34, pp. 3388-3396. , PID: 28665182; Xu, G., Ao, R., Zhi, Z., Jia, J., Yu, B., miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury (2019) J Cell Physiol, 234, pp. 10205-10217. , COI: 1:CAS:528:DC%2BC1cXitVKgsrjP, PID: 30387159; Xia, C., Zeng, Z., Fang, B., Tao, M., Gu, C., Zheng, L., Wang, Y., Mei, S., Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects (2019) Free Radic Biol Med, 143, pp. 1-15. , COI: 1:CAS:528:DC%2BC1MXhsVOgsLfL, PID: 31351174; Liao, Z., Luo, R., Li, G., Song, Y., Zhan, S., Zhao, K., Hua, W., Yang, C., Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo (2019) Theranostics, 9, pp. 4084-4100. , COI: 1:CAS:528:DC%2BC1MXit1ertLnL, PID: 31281533; Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., Hu, B., Li, X., Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats (2016) Int J Biol Sci, 12, pp. 836-849. , COI: 1:CAS:528:DC%2BC2sXms1GqtLc%3D, PID: 27313497; Liu, X., Li, Q., Niu, X., Hu, B., Chen, S., Song, W., Ding, J., Wang, Y., Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis (2017) Int J Biol Sci, 13, pp. 232-244. , COI: 1:CAS:528:DC%2BC1cXjs12ru7w%3D, PID: 28255275; Wong, K.L., Zhang, S., Wang, M., Ren, X., Afizah, H., Lai, R.C., Lim, S.K., Toh, W.S., Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model (2020) Arthroscopy, 36, pp. 2215-2228.e2212. , PID: 32302651; Tao, S.C., Yuan, T., Zhang, Y.L., Yin, W.J., Guo, S.C., Zhang, C.Q., Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model (2017) Theranostics, 7, pp. 180-195. , COI: 1:CAS:528:DC%2BC1cXhs1SqtLc%3D, PID: 28042326; Bier, A., Berenstein, P., Kronfeld, N., Morgoulis, D., Ziv-Av, A., Goldstein, H., Kazimirsky, G., Popovtzer, R., Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy (2018) Biomaterials, 174, pp. 67-78. , COI: 1:CAS:528:DC%2BC1cXpslynsb8%3D, PID: 29783118; Cheng, X., Zhang, G., Zhang, L., Hu, Y., Zhang, K., Sun, X., Zhao, C., Zhao, J., Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration (2018) J Cell Mol Med, 22, pp. 261-276. , COI: 1:CAS:528:DC%2BC1cXit1Cgsg%3D%3D, PID: 28805297; Jin, Z., Ren, J., Qi, S., Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2 (2020) Int Immunopharmacol, 78, p. 105946. , COI: 1:CAS:528:DC%2BC1MXit12jsLrM, PID: 31784400; Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., Noël, D., Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis (2017) Sci Rep, 7, p. 16214. , PID: 29176667, COI: 1:CAS:528:DC%2BC1cXhsFant7vJ; Meng, Q., Qiu, B., Exosomal microRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression (2020) Front Physiol, 11, p. 441. , PID: 32528301

Indexed by Scopus

Leave a Comment